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Abstract: 
The aim of this simulation study was to compare performances of inbreeding (F) estimators using dense 
panels of biallelic markers. Two types of population structures were derived for 10 discrete generations 
starting from an ancestral population at mutation drift equilibrium simulated with an effective size of 
1000 and a mutation rate ( =5.10-4). Subpopulations differed by the level of selection applied both on 
males and females: no selection or a structure close to a breeding program with selection of the best 40 
males and 500 females on EBV with accuracy of 0.85 and 0.71, respectively, on a trait with heritability of 
0.3. Marker panels were made up of 36 000 biallelic markers (18 per cM) and were available for animals 
in  the  last  4  generations.  Pedigrees  were  recorded  on  the  last  8  generations.  For  each  scenario,  30  
replicates were carried out. Analysed estimators were the correlation (VR1) and regression (VR3) 
estimators described by VanRaden in 2008 to build the genomic relationship matrices. Other estimators 
included the weighted corrected similarity (WCS) estimator published by Ritland in1996 and a modified 
WCS estimator accounting for pedigree information (WPCS). Marker-based estimators were also 
compared  to  the  pedigree  estimator  (PED).  F  estimates  were  correlated  and  regressed  to  the  true  
simulated values of inbreeding to assess the precision and bias of estimators, respectively. Main results 
show that use of dense marker information improves the estimation of F, whatever the scenario. The 
accuracy  of  F  estimates  and  the  bias  were  increased  in  presence  of  selection,  except  for  PED.  Across  
scenarios,  VR3,  WCS  and  WPCS  were  the  most  correlated  with  true  F  values.  In  the  situation  where  
pedigree was exhaustive, VR3 performed as well as WCS and WPCS but had a larger variability over 
replicates. Although less biased on average, VR1 was less accurate than other estimators especially when 
allele frequencies were not properly defined. Accounting for pedigree information into WCS did not 
increase its accuracy and did not reduce bias in the tested scenarios. Thus, the results indicate that WCS, 
which can be also used with multiallelic markers, is a promising estimator both to build the genomic 
relationship matrix for genomic evaluations and to better assess genetic diversity in selected populations. 
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I- Introduction 
 
Following recent advances of high-throughput 
genotyping technologies, the breeding industry has 
been largely adopting genetic markers for selection 
purposes. Based on the use of dense marker panels, 
genomic selection offers promising opportunities to 
improve rates of genetic gain using genomically 
enhanced evaluations (Schaeffer, 2006) but also the 
management of genetic diversity of livestock 
populations (Daetwyler et al., 2007). Compared to 
conventional BLUP evaluations, accounting for 
genomic information improves the accuracy of 
estimated breeding values because it allows 
estimating the mendelian sampling term, even early 
in life. Hence, genomic selection makes it possible 
to reduce inbreeding rates due to increased 
emphasis on own rather than family information 
(Daetwyler et al., 2007). Besides, molecular 
markers can be used instead of or coupled with 

pedigree information to improve the estimation the 
level and evolution of inbreeding coefficients (F). 
Therefore, genomic prediction and careful 
monitoring of genetic resources will be efficient 
provided  accurate  F  estimators.  So  far,  most  
marker-based estimators were conceived to be 
applied with sparse marker maps, in which markers 
were assumed to be independent, and with 
unselected and large populations in which existing 
levels of inbreeding could be ignored. Violation of 
both assumptions is obvious when estimating F 
coefficients in highly selected populations using 
dense marker maps. The objective of this study was 
to assess the performance of different F estimators 
for different types of population structures using 
simulated data. A marker-based estimator 
accounting for pedigree information was also 
derived and compared here to existing pedigree- 
and marker-based estimators.  
 
II- Material and Methods 
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Description of simulated data. Performance of 
inbreeding estimators was assessed based on 
simulated datasets which were generated with 
QMSim program (Sargolzaei and Schenkel, 2009). 
Two different population structures were simulated 
which differed by the occurrence of selection. To 
simulate genotypic data with realistic linkage 
disequilibrium (LD) structures, both populations 
were derived from a common ancestral population 
at mutation-drift equilibrium (MDE). This 
population had an effective size of 1000 
individuals and was simulated by randomly mating 
500 males and 500 females for 5000 discrete 
generations. Two offspring were produced per 
mating. In generation 5000, individuals were 
considered as base founders for deriving the 2 
populations used for analyses. Each subpopulation 
diverged independently for 10 generations and all 
genotypes, phenotypes and pedigrees were 
recorded for the last 8 generations.  
In the first subpopulation, all demographic and 
reproductive parameters were the same as in the 
ancestral population to generate a panmictic and 
unselected population at MDE. The second 
subpopulation was simulated to mimic a strongly 
selected population on a trait with heritability of 
0.3. Therefore, the best 40 males and 500 females 
were kept for reproduction based on estimated 
breeding values whose accuracies were set to 0.85 
and 0.70 for males and females, respectively. To 
make selection effective on the female side, the 
number of females was increased by distorting the 
proportion of born female calves to 66%, thus 
avoiding increasing the population size.  
Individuals had diploid genomes comprising 
twenty 1 M long chromosomes, each bearing 100 
quantitative trait loci (QTL) with 2 equifrequent 
alleles in the first ancestral generation. A mutation 
rate of 2.5 10-5 per  haploid  site  affected  QTL  so  
that new alleles could emerge during the 
simulation. QTL allelic effects were sampled from 
a gamma distribution with scale and shape 
parameters equal to 5.40 and 0.42, respectively 
(Hayes and Goddard, 2001). Neither dominance 
nor epistatic effects were simulated. QTL effects 
explained 75% of the genetic variance of the trait, 
the other 25% being attributable to polygenes. Each 
chromosome was also bearing 4000 evenly spaced 
markers with 2 equifrequent alleles in the first 
ancestral generations. In the first ancestral 
generation, all alleles were tagged with a unique 
label and transmission of ancestral alleles was 
followed over generations. A mutation rate of 5.10-

4 per haploid site was applied to marker loci and 
kept constant over generations. When mutated, a 
new label was created to clearly distinguish 

identical by state (IBS) and identical by descent 
(IBD) alleles. The SNP allele value was then 
sampled from a Bernoulli distribution with 
probability 0.5. Hence, mutation was not recurrent. 
A panel of 36 000 markers was constituted by 
sampling at random among loci with minor allele 
frequencies (MAF) higher than 5%. 
Recombination was modelled with Haldane´s 
mapping function, assuming a mean number of 1 
crossing-over per M and no interference. 
 

Inbreeding coefficient estimators 
Considering a single point in the genome, F can be 
defined as the probability that the two homologous 
alleles within an individual are IBD with respect to 
a defined based population. Considering the 
genome as a whole, the achieved inbreeding 
coefficient of an individual is the proportion of its 
genome which is IBD. Variation in homozygosity 
by  descent  (HBD) depends then both on pedigree 
and the extent to which alleles at different loci are 
jointly IBD (Hill and Weir, 2011). In this study, 
true F coefficients were directly computed by 
counting the genome-wide (GW) proportion of 
HBD loci over the 80 000 simulated markers. This 
was facilitated by the use of unique labels defined 
for each ancestral allele. To be comparable in 
magnitude with other inbreeding estimates, true 
coefficients were expressed relative to the mean 
HBD of the base population comprising individuals 
recorded as founders in the pedigree file using 
conventional change of base population (Powell et 
al., 2010). 
 

Pedigree-based estimator. Pedigree-based F 
coefficients (Fped) were estimated with Relax2 
(Strandén and Vuori, 2006) using algorithm by 
Meuwissen and Luo (1992) and exhaustive 
pedigree information over the last 8 generations.  
 

Regression of genomic over pedigree-based 
coefficients. VanRaden (2008) proposed an 
estimator based on the linear regression of marker 
genotype sharing over the pedigree-based 
relationship matrix (A) adjusting for the mean 
homozygosity of the population: 
MM'  =  g011' + g1A  +  E,  where  g0 and  g1 are  the  
intercept and slope of the regression model, 
respectively. Matrix E includes differences of true 
from expected fractions of DNA in common plus 
measurement error. Then, the genomic relationship 
matrix can be obtained by reversing the 
calculations using g0 and  g1 estimated in the first 
step as described in Van Raden (2008).  
 
Genome-wide covariance of minor allele counts. 
This approach initially introduced by Li and 
Horwitz (1953), was recently used by VanRaden 
(2008) to efficiently build the genomic relationship 
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matrix used for genomic evaluations. Assuming 
Hardy-Weinberg equilibrium (HW) and linkage 
equilibrium (LE),  F  can  be  derived  as  the  
correlation between gametes constituting an 
individual (Powell et al., 2010). As described by 
VanRaden (2008), locus specific F estimates can be 
efficiently obtained from biallelic marker data as 
GW-homozygosity by state (HBS) corrected for 
mean HBS in the base population divided by the 
variance in homozygosity expected at this locus 
under HW-LE. Locus specific estimates were 
averaged over loci to obtain a GW estimate. This 
estimator was denoted VR1. 
 

Weighted corrected similarity. Ritland (1996) 
extended the preceding approach to any kind of 
codominant markers by applying a 3-step 
procedure to compute at first allele-specific 
estimators which are combined into locus specific 
estimators and again combined into GW estimates. 
Briefly, the probability sikl to sample 2 homozygous 
alleles of value l at a marker k in an individual i 
can  be  partitioned  as  sikl =  Fikl*pkl+ (1-Fikl)*pkl

2(1) 
where Fikl is the F coefficient of individual i 
estimated  using  allele  l  at  marker  locus  k  and  pkl 
denoting allele  frequency of  allele  l  at  locus k.  By 
reversing (1), allele specific Fikl coefficients can be 
estimated  as  Fikl = (sikl-  pkl

2)/(pkl*(1- pkl)). In this 
moment estimator, expectation of allelic similarity 
sikl was replaced by its observed value for allele l at 
locus k Sxykl = 0.25*(Iackl + Iadkl + Ibckl + Ibdkl) with 
Ixykl an indicator variable equal to 0 if paternal 
allele  x  (a  or  b)  and  maternal  allele  y  (c  or  d)  are  
homozygous.  
At  a  locus,  since  all  allelic  types  are  not  equally  
informative depending on their allele frequencies, 
it is desirable to find an optimal linear combination 
of allele specific estimators: 

l
ikllik FwF  

which maximizes accuracy and minimizes bias of 
the locus specific estimator. The vector of optimal 
weights can be derived with a Lagrangian 
optimization procedure under constraint of minimal 
variance of the estimator by minimizing the 
derivative of Fikl under the constraint no bias. 
Using Lagrangian multipliers, it can be shown that 
wkl is equal to wkl=V-1.1/(1 .́V-1.1) where V denotes 
the matrix of variance-covariance between allele 
specific estimators at a locus as described by 
Ritland (1996) and 1 is  a  vector  of  1.  Similarly,  a  
second optimization procedure canbe carried out to 
optimally combine locus-specific coefficients 
accounting for differences in informativeness 
between loci arising from differences in MAF 
across loci and statistical dependencies between 
markers. In the original estimator, Ritland (1996) 
set  Fijk to  0  and  supposed  that  markers  were  

independent. Under those conditions, optimal locus 
specific weights were equal to the inverse of the 
locus specific estimator variance. This estimator 
was denoted WCS. 
 

Inclusion of pedigree information into Ritland´s 
estimator. Ignoring prior knowledge of pedigree to 
derive optimal weights may bias GW estimates, 
especially in intensively selected or small 
populations. Therefore, Fped estimates were 
included in the computation of weights to construct 
the V matrix. In this study, locus specific weights 
were also derived assuming independence between 
markers. This estimator including pedigree 
information was denoted WPCS. 
 
Comparison criteria of estimators. F coefficients 
were estimated using allele frequencies observed 
either in the population of pedigree founders or in 
the genotyped population (4 last generations). 
Performance of estimators was assessed based on i) 
the average bias (B), ii) the correlation coefficient 
between true HBD and each estimator ( ) and 
finally iii) the linear regression slope ( ) of true 
HBD on each estimator.  
 

III. Results and Discussion. 
 
Distribution of allele frequencies. The distribution 
of observed allele frequencies followed a uniform 
distribution (results not shown) in unselected as 
well as in selected populations. Over replicates, the 
mean correlations between observed allele 
frequencies in the genotyped and the pedigree 
founder populations were equal to 0.99 and 0.97 
for unselected and selected populations, 
respectively. 
 

Table 1. Mean bias (B), correlation coefficient with 
true HBD ( ) and regression coefficient ( ) of true 
HBD on each estimator along with the standard 
errors of the mean (SEM) obtained for unselected 
populations over 30 replicates 

Estimator Mean B (SEM) Mean  
(SEM) 

Mean  
(SEM) 

PED 0.00 (6.82E-04) 0.72 (0.11)* 1.02 (0.12) 
VR1 0.00 (7.67E-04) 0.91 (0.03)* 0.79 (0.04)* 
VR3 0.00 (1.41E-03) 0.97 (0.01) 0.88 (0.02)* 
WCS 0.00 (5.90E-04) 0.97 (0.01) 0.90 (0.02)* 
WPCS 0.00 (6.17E-04) 0.96 (0.01) 0.90 (0.02)* 
*Significantly different from 0 (or 1, accordingly) at a 5% 
error level 
 

Performance of estimators in unselected 
populations. Over replicates, mean true HBD for 
individuals born in the last 4 generations was equal 
to 0.16% and mean standard deviation of HBD was 
1.78%. Average biases of each estimator are 
presented in Table 1 along with correlation 
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coefficients ( ) and regression coefficients ( ) of 
true HBD over inbreeding estimates. In unselected 
populations, no estimator was significantly biased 
(Table1). Pedigree estimator was less variable than 
marker-based estimators whereas variability of 
marker-based estimates was similar to the one of 
true HBD.  
Correlation coefficients of analyzed F estimators 
with true HBD presented larger range of values. 
Pedigree estimator was the least correlated with 
true HBD (0.72) although the coefficient obtained 
in the present study was much higher than in other 
studies (Keller et al., 2011). This is mainly due to 
the effects of scaling down the size of genomes in 
simulation studies which increases the variability 
of true HBD whereas Fped assumes an infinitely 
large number of independent chromosome 
segments. VR1 was strongly correlated with true 
HBD (0.91). VR3, WCS and WPCS were even 
more strongly correlated with true HBD (0.97) 
confirming that use of marker information clearly 
improves the estimation of achieved inbreeding. 
Although no bias was detected on average for 
estimators in unselected populations, analysis of 
regression coefficients revealed occurrence of 
value-dependent bias. Average regression 
coefficient  was  close  to  1  for  Fped indicating that 
bias was not increasing with increasing values of 
true HBD. However, the variability of  was larger 
for  Fped than for marker-based estimators. 
Regression coefficients for WCS and WPCS 
estimators were lower than 1 indicating that 
estimation bias tended to increase for animals with 
the  most  extreme  values  of  HBD.  This  trend  was  
even clearer for VR3 and VR1 (Table 1). In 
unselected populations, similar results were 
obtained whatever the definition of the base 
population since changes in allele frequencies were 
tiny between the pedigree founders and genotyped 
populations. 
 

Performance of estimators in selected 
populations. Over replicates, mean true HBD for 
individuals born in the last 4 generations increased 
to 2.61% and average standard deviation of HBD 
was 3.60%. Comparison criteria were summarized 
in Table 2 and were computed using allele 
frequencies observed in the pedigree founder 
population. Pedigree estimates were significantly 
lower than true HBD (B= -0.009) and were also 
less variable (0.024). VR1 estimator was not 
significantly biased whereas WCS and WPCS 
significantly underestimated true HBD (Table 2). 
VR3 estimator tended to underestimate true 
genomic inbreeding but average bias did not 
significantly deviate from zero due to large 
variability of B over replicates.  
 

Table 2. Mean bias (B), correlation coefficient with 
true HBD values ( ) and regression coefficient ( ) of 
true HBD on each estimator along with standard 
errors of the mean (SEM) obtained for selected 
populations over 30 replicates. 

Estimator Mean B 
(SEM) Mean  (SEM) Mean  (SEM) 

Ped -0.01 (0.003)* 0.67 (0.024)* 1.01 (0.043) 
VR1 0.00 (0.003) 0.96 (0.004)* 0.90 (0.010)* 
VR3 -0.01 (0.010) 0.98 (0.002)* 0.97 (0.012)* 
WCS -0.01 (0.002)* 0.99 (0.001)* 0.97 (0.004)* 
WPCS -0.01 (0.002)* 0.98 (0.002)* 0.97 (0.004)* 
*Significantly different from 0 (or 1, accordingly) at a 5% 
error level 
 
In selected populations, the correlation coefficient 
between  true  HBD  and  Fped slightly decreased, 
indicating decreased estimation accuracy. 
However,  coefficient indicated that bias was still 
independent of HBD values. In selected 
populations, accuracy of marker-based estimators 

>0.91) increased. Indeed, since increases in HBS 
were supposed to arise mainly from increase in 
HBD, marker-based estimators were more able to 
explain variability in F between individuals based 
on  their  levels  of  HBS.  Accuracy  of  VR1  was  
significantly lower than the one of other marker-
based estimators (Table 2). Although no average 
bias was detected for VR1, regression coefficient  
indicated that a value-dependent bias occurred. 
Thus, with VR1, no bias was observed at the 
population level whereas individual biases could 
happen, especially for individuals with most 
extreme HBD values. Other marker-based 
estimators  also  suffered,  although  to  a  smaller  
extent, from value-dependent bias. At this point, it 
should be noted that including pedigree into WCS 
did not improve estimation accuracy which was 
already high. However, it should be noted that 
proportion of animals with large F values was very 
small. When considering only animals with true 
HBD larger than 6.25%, including pedigree 
information reduced B and made  closer to 1, 
although those changes were not significant based 
on 30 replicates. 
As expected, when using allele frequencies 
observed in the current genotyped population, 
estimated  mean  F  levels  were  close  to  0  because  
this defined the genotyped population as the base 
population. All marker-based estimators requiring 
the  use  of  allele  frequencies  (VR1,  WCS  and  
WPCS) were equally biased in this scenario (-0.027 
± 0.003). Interestingly, VR1 appeared to be more 
sensitive to the definition of allele frequencies than 
WCS and WPCS both in terms of  (0.87 ± 0.028) 
and  (0.81± 0.033) coefficients, although changes 
in allele frequencies were small between pedigree 
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founder and genotyped populations. This meant 
that variance in true HBD explained by VR1 was 
strongly reduced and that value-dependent bias also 
increased. Therefore, it is clear that the allele 
frequencies to be used to construct genomic 
relationship matrices for genomic evaluations 
should be the ones estimated in the pedigree 
founder population and not the ones observed in 
the genotyped population (VanRaden, 2008). WCS 
estimator appeared to be robust to the different 
definitions of allele frequencies both in terms of 
accuracy ( =0.98 ± 0.003) and value-dependent 
bias ( =0.98± 0.007). On the contrary, estimation 
accuracy of WPCS was slightly reduced ( =0.95 
±0.009) and value-dependent bias increased 

=0.93±0.008) when considering genotyped 
individuals as the base population. This meant that 
more weight was given to allele frequencies in the 
weighting procedure when accounting for pedigree 
information leading to sub-optimality of weights, 
especially  for  individuals  with  the  largest  HBD  
values.  
 
 
IV. Conclusion 
Results of this study showed that using dense 
panels of markers could significantly improve the 
accuracy of estimation of genome-wide inbreeding 
coefficients. Accuracy of marker-based estimators 
was improved for populations which have already 
been selected for many generations. In such 
selected populations, defining pedigree founders as 
base populations clearly reduced the estimation 
bias. Including pedigree information into WCS 
seemed to be useless given the high accuracy of 
this estimator and the low mean level of inbreeding 
in simulated populations. Besides, accounting for 
pedigree information into WPCS rendered the 
estimator more sensitive to the allele frequency 
definition. 
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