
Genomic Selection in Dairy Cattle

Sander de Roos Head Breeding & Support

EAAP Stavanger 2011

Models & reliabilities High density & sequence Cow reference populations Multiple breed Inbreeding

Meuwissen et al. (2001)

- use genome-wide dense markers
- fit all markers simultaneously

$$\mathbf{y} = \boldsymbol{\mu} + \boldsymbol{\Sigma}_i \, \mathbf{X}_i \mathbf{g}_i + \mathbf{e}$$

RR-BLUP

- all markers have same variance

Bayesian

- many small, few large variance

G-BLUP

 $\mathbf{u} \sim \mathsf{N}(0, \mathbf{G}\sigma^2)$

G = genomic relationship matrix

- all markers evenly important
- -similar genotype \Rightarrow similar EBV
- G-BLUP is equivalent to RR-BLUP

Many small QTL \rightarrow RR-BLUP, G-BLUPFew large QTL \rightarrow Bayesian (or similar)

RR-BLUP

-easy to implement, fast

G-BLUP

– allows integration of ${\bf G}$ and ${\bf A}$

Bayesian

-higher reliability when QTL can be detected

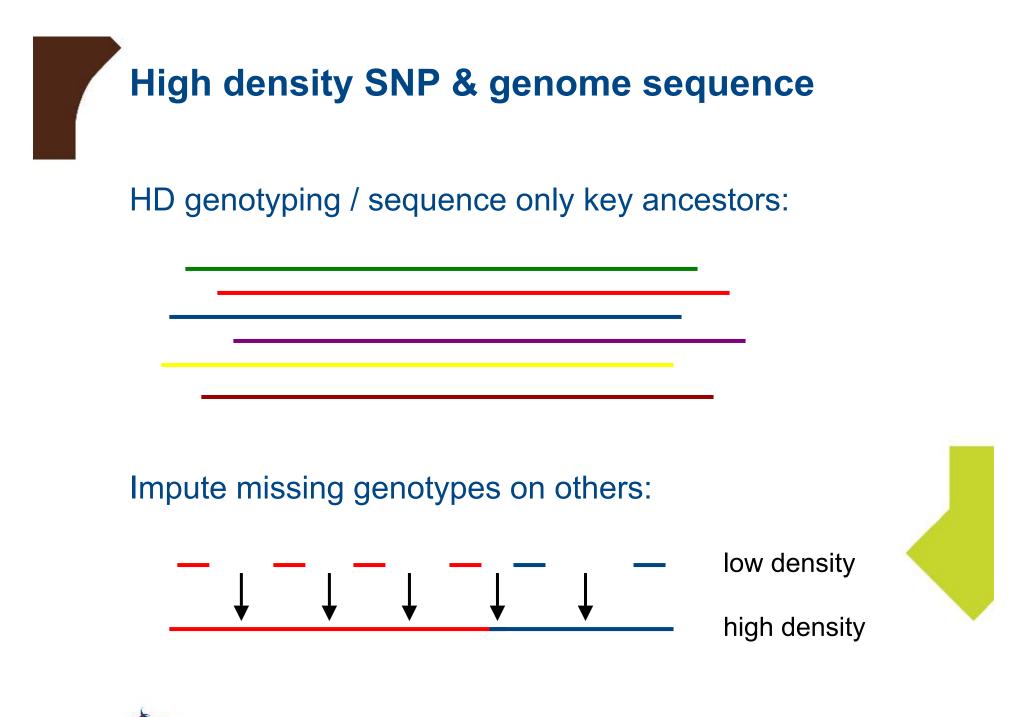
Reliability not same for everyone

RR-BLUP & G-BLUP

- many, close family in reference pop. \Rightarrow higher r²
- higher correlation with phenotypes
- -large chromosome segments

Bayesian

- more robust
- markers in LD with QTL



Bayesian > RR-BLUP & G-BLUP when enough power – very dense markers – large Nh² – large QTL

More persistent genomic predictions – across families

- across generations
- across breeds

Cow reference populations

h ² cow	h ² bull	1 bull ~	
0.10	0.72	7 cows	$r^2 \sim Nh^2$
0.30	0.89	3 cows	
0.50	0.93	2 cows	

Cow reference populations

h ² cow	h ² bull	1 bull ~
0.10	0.72	7 cows
0.30	0.89	3 cows
0.50	0.93	2 cows

- -# bulls is limited
- lower h² so need large N
- -genotyping gets cheaper
- novel traits
- direct value for farmer

Cow reference populations

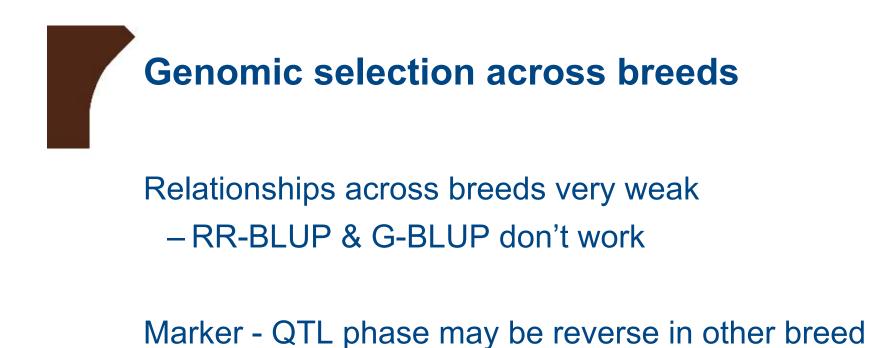
What is value of a GEBV? – genotype all heifer calves – select best 50%

Break-even when genotyping < \in 27

Genomic selection across breeds

Combine favourable traits

-e.g. Holstein production x Jersey fertility



Cross-breds have lot of variation

- detect best cross-breds using genomics

Combine reference populations

- increase reliability

Genomic selection across breeds

May work if:

- $-\geq$ 1 marker per 10 kb \Rightarrow >300,000 markers
- use Bayesian method to capture marker QTL LD
- -large QTL and/or very large Nh²

But, even then:

- different breeds, different QTL
- -QTL effects may differ between breeds
- Nh² too small for most QTL

Waiting for results...

Inbreeding in genomic selection schemes

- 1. Select on GEBV (versus PA)
- 2. Reduce generation interval
 - -double ΔG
 - same ΔF per generation
 - but ΔF per year almost tripled!

Inbreeding in genomic selection schemes

- 1. Select on GEBV (versus PA)
- 2. Reduce generation interval
 - double ΔG
 - same ΔF per generation
 - but ΔF per year almost tripled!
- 3. Restrict ΔF per year – almost double ΔG

Inbreeding in genomic selection schemes

Some inbreeding is OK – selection of favourable QTL alleles

Currently, however – selection of favourable, long haplotypes

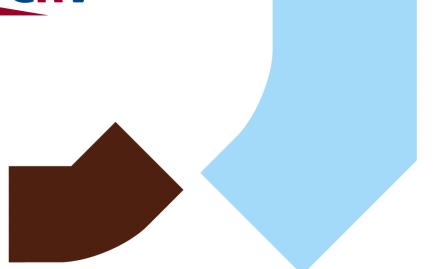
Selected haplo's may include unfavourable QTL alleles Unselected haplo's may include favourable QTL alleles

Need for applications that better capture QTL

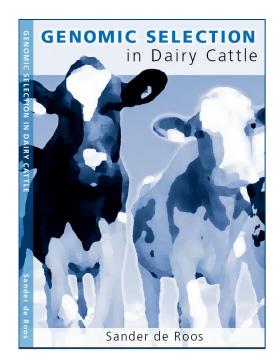
RR-BLUP & G-BLUP work well

Future: capture individual QTL

- persistent across generations, families, breeds
- multi-breed, very high density, very large Nh²


Cow reference populations

- increase Nh², novel traits, direct value for farmer


 ΔG may double, but ΔF needs attention

Thank you for your attention

EAAP Stavanger 2011

