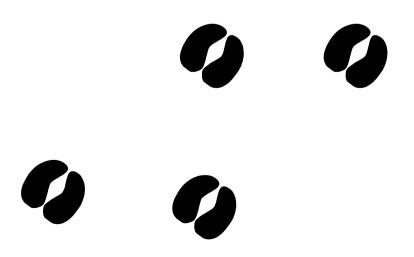
Comparison of different methods to calculate genomic predictions – results from SNP-BLUP, G-BLUP and one-step H-BLUP

Minna Koivula, Ismo Strandén, Esa Mäntysaari

MTT Agrifood Research Finland, Biotechnology and Food Research, Biometrical Genetics

Introduction


- Genomic selection refers to genetic improvement of animals through selection based on genomic breeding values (GEBVs)
- GEBVs predicted using a reference population of animals that have genotype as well as phenotypic information

Many statistical models proposed to predict GEBVs

Objectives of this study were to apply

- a simple marker model in SNP-BLUP
- alternative genomic matrices in G-BLUP
- one-step BLUP (H-BLUP)

... analyses of production and mastitis traits in Nordic red cattle (RDC)

Materials and methods

6145 genotyped RDC bulls with 37996 snp's

- bulls genotyped using the Illumina Bovine SNP50 BeadChip (Illumina, San Diego, CA)
- Phenotypic data from official Nordic genetic evaluations for the RDC
 - Full data for bulls from March 2010 with EBVs, reliabilities (r²EBV), and effective daughter contributions (EDC)
 - Reduced data with the same animals, but EBVs calculated using data until year 2005
 - Response variables deregressed proofs (DRP)

ODE Deregressions with procedure DeRegress in MiX99

- DRP = μ + EBV + ϵ

- Heritabilities from national evaluations used in deregression
- Daughters per sire accounted for by using EDC as a weights
- EBVs of all bulls in the pedigree were included in the deregression
- DRP was accepted as an observation if its DRP reliability (r²_{DRP}) was larger than 20%

- The r²_{DRP} for bull i was estimated as

 $r_{DRP,i}^2 = EDC_i/(EDC_i+\lambda)$, where $\lambda = (4 - h^2)/h^2$.

Heritabilies (h²), lambdas (λ), and the average r²_{DRP} by trait

Trait	h²	λ	r ² _{DRP}	r ² _{DRP}		
			Reference bulls	Candidate bulls		
Milk	0.39	9.26	0.96	0.94		
Protein	0.31	11.90	0.95	0.93		
Fat	0.36	10.11	0.96	0.93		
Mastitis	0.04	99.00	0.88	0.80		

Number of bulls in different data sets

	Full	Data	Referen	Candidate bulls	
Trait	Bulls with DRP	Genotyped with DRP	Bulls with DRP*	Genotyped with DRP	
Milk	6253	4145	5309	3330	809
Protein	6253	4145	5309	3330	809
Fat	6253	4145	5309	3330	809
Mastitis	6169	4431	5363	3649	780

*For one-step method reference bulls include both genotyped and non-genotyped bulls

BLUP models

1. SNP-BLUP

- DGV estimated $\,\hat{a}=1\hat{\mu}+M\hat{g}\,$
- ĝ are the estimated marker effects from the SNP-BLUP

2. G-BLUP

y= 1µ + Xa + e

- Defined equivalent to the SNP-BLUP model but instead of including the SNP-effects to the model only the sum of the effects a=Zg included
- Uses either:
 - Unscaled G-matrix $\mathbf{G}_0 = \mathbf{Z}\mathbf{Z}^{\prime}$
 - Scaled G-matrix $\mathbf{G}_{k} = \mathbf{Z}\mathbf{Z}^{\prime}/\mathbf{k}$
 - $k=2\Sigma p_i(1-p_i)$ is a scaling parameter

3. One-step H-BLUP

y_t= 1μ +Wa + e

 Uses G –matrix from genotyped animals and A₁₁ relationship matrix from pedigree

•
$$\mathbf{H}^{11} = \mathbf{G}_{w}^{-1} - \mathbf{A}_{11}^{-1}$$

$$-\mathbf{G}_{w} = w t \mathbf{G}_{k} + (1-w)\mathbf{A}_{11} \text{ with } t = \Sigma(\mathbf{A}_{ii}) / \Sigma(\mathbf{G}_{k,ii})$$

- -t scales the sums of diagonals in **G**_k and **A** to be equal
- w=0.90 which assumes that 10% of total genetic variance is due to the polygenic effect not described by the SNP markers

Analyses

- Variance of marker effects (σ_g²) and residual variance (σ_e²) estimated from the full data using a SNP marker genetic model with Bayesian method
- \square All weighted analysis with w=EDC/ λ
 - $-\lambda = (4 h^2)/h^2$
 - w accounted heterogeneous residual variances due to difference in reliabilities of DRP

Validation

- Regression of DRP 2010 to DGV or GEBV 2005
- Each R² value was divided by the average accuracy of DRP

$$R_{validation}^2 = R_{model}^2 / r_{DRP}^2$$

- Parent Average BLUP
- Comparison of DGV
- Comparison of R²

Results

Computing time did not differ much with different BLUP models

- The G_k -BLUP needed less iterations and less time than the other BLUP models.
- In practice, differences between the models were negligible as the G_k -BLUP converged in about 50 seconds and SNP-BLUP in 5 G_0 -BLUP in 9 and H-BLUP in 3 minutes (with 2.8 GHz)
- The most time consuming part in the G-BLUP and H-BLUP was the construction and inverse of the Gmatrix and the H-matrix (~20 minutes)

Correlations of genomic predictions for candidate bulls

		G _k -BLUP	G₀-BLUP	H-BLUP
Milk	SNP-BLUP	0.9996	0.9998	0.9704
	G _k -BLUP		0.9997	0.9707
	G ₀ -BLUP			0.9709
Protein	SNP-BLUP	0.9997	0.9999	0.9616
	G _k -BLUP		0.9997	0.9618
	G ₀ -BLUP			0.9622
Fat	SNP-BLUP	0.9997	0.9999	0.9782
	G _k -BLUP		0.9997	0.9786
	G ₀ -BLUP			0.9785
Mastitis	SNP-BLUP	0.9997	0.9999	0.9837
	G _k -BLUP		0.9996	0.9832
	G ₀ -BLUP			0.9836

Reliability, candidates

	Milk		Protein		Fat		Mastitis	
	b ₁	R ²						
Parent Average	0.73	0.19	0.77	0.20	0.83	0.23	0.65	0.08
SNP-BLUP	0.76	0.30	0.77	0.31	0.85	0.40	0.76	0.17
G _k -BLUP	0.77	0.30	0.78	0.31	0.86	0.40	0.77	0.17
G₀-BLUP	0.76	0.30	0.77	0.31	0.85	0.40	0.76	0.17
H-BLUP	0.80	0.32	0.83	0.34	0.90	0.42	0.77	0.17

Conclusions

Computing time did not differ much with different BLUP models

 \bigcirc SNP-BLUP and G₀-BLUP give same evaluations \bigcirc G_k-BLUP slightly different b1 values

b₁ values suggests that DGVs overpredict the variation in DRPs

Milk and Protein validation values were low (~0.31)
 Fat R²_{validation} slightly higher (~0.40)
 Mastitis validation very low (0.17)

- The results indicate that different genomic models give comparable results
 - For the candidate bulls, the SNP-BLUP and G-BLUP gave the same DGV's but there was a difference to those from H-BLUP
- In general, reliability of DGV was 45% higher than reliability of traditional PA, averaged over the production and mastitis traits
- H-BLUP had slightly higher validation reliabilities than the other models
 - Presumably because of 0.9 weight for H¹¹ matrix

Acknowledged for providing the genotype data and the EBV data

