The Single Step: Genomic Evaluation for all

A. Legarra, I. Misztal, I. Aguilar

INRA, UR 631 SAGA, BP 52627, F-31326 Castanet Tolosan, France University of Georgia, Department of Animal and Dairy Science, Athens, 30602, USA

INIA, Las Brujas, 90200, Uruguay

andres.legarra@toulouse.inra.fr

Consider evolution of genetic evaluation methods

- we (animal breeders) like generality
- Animal populations (particularly ruminants) are complex:

pedigree loops culling	overlapping generations, heterogeneous information

- For this, popular methods consider all data simultaneously

Consider evolution of genetic evaluation methods

- Computing was made simpler with more powerful computers, but
- once a coherent \& elegant framework is established, (almost) everything is feasible
- smart people are much more important than brutal force
- Inversion of A
- Iteration on data
- Sparse matrices
- Approximate/iterative methods for reliabilities

Consider evolution of genomic evaluation methods

- Very fast use of powerful algorithms
- Gauss-Seidel with Residual Update, PCG
- Lasso / Elastic Net
- EM
- Inclusion of pedigree \& fixed effects
- records?

Single Step as a missing data problem

- Methods for genomic evaluation lack of a general way of using traits recorded in relatives
- If relatives do not have genotype of their own
- We can see genotype as a missing data problem (Christensen \& Lund, 2010)
- «Genotype »:
- at the SNPs
- at multiallelic markers (haplotypes)
- at the genes/QTLs themselves
- the following derivations are very general

Missing data

Fill-in missing data: data augmentation

- « data augmentation refers to a scheme of augmenting the observed data so as to make it more easy to analyze » (Tanner \& Wong, 1987)
- Two flavors: EM and Bayesian (Posterior distributions)
- Augmenting = imputation
- In both flavors (EM and Bayesian), the joint distribution of the imputations needs to be considered
- Consider for instance a very far ancestor
- Its predicted genotype will be the highest of ($p^{2}, 2 p q, q^{2}$)
- But actually its distribution is «AA, Aa, aa » with $\operatorname{Pr}=\left(p^{2}, 2 p q, q^{2}\right)$
- Using a point estimator is a poor solution

(Joint) Uncertainty

- Consider a cow daughter of a genotyped bull

- Consider the parents of two genotyped bulls

AA $A a$

Imputation

- Long-range imputation, linkage-based imputation, peeling, etc
- These are the most exact forms of imputation and work well for 1 or 2 generations or if a subset of markers is genotyped, but...
- Most often one imputation is the result
- Very hard to come up with the distribution of the imputations
- This is in principle feasible by sampling (but very long)

Linear form of imputation

In the linear world everything is simpler

- Consider gene content at a locus

$$
g=\{0,1,2 \text { for } a a, a A, A A\}
$$

- Consider two individuals i and j
- The basic identity is (Falconer; Cockerham, 1969):
$-\operatorname{Cov}\left(\mathrm{g}_{\mathrm{i}}, \mathrm{g}_{\mathrm{j}}\right)=\operatorname{Pr}(\mathrm{IBD}) 2 p q$
- Can we predict gene content of j from gene content of i ?

Understanding covariance of gene content

- To each one of the 2 M founder alleles we assign a tag g saying if the allele is $A(g=1)$ or a $(g=0)$ with probability p and $q=1-p$
- What is the covariance between g_{1} and g_{9} ?
- 9 might inherit alleles from 1
- With probability $\operatorname{Pr}(I B D)$ between 1 and 9
- 9 might inherit alleles from 4
- With probability $\operatorname{Pr}(I B D)$ between 4 and 9
- ...and so on

Linear form of imputation

- Therefore we can predict gene content of j from gene content of i
- And its distribution (uncertainty)
$\hat{\mathbf{g}}_{j}=E\left(\mathbf{g}_{j} \mid \mathbf{g}_{i}\right)=\mathbf{2} p+\mathbf{A}_{12} \mathbf{A}_{22}^{-1}\left(\mathbf{g}_{i}-\mathbf{2} p\right)$
$\operatorname{Var}\left(\mathbf{g}_{j} \mid \mathbf{g}_{i}\right)=\left(\mathbf{A}_{11}+\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21}\right) 2 p q$

This is simple selection index machinery

- This is an approximation: linkage \& mendelian rules (incompatibilities) are not used
- But the same approximation is done working with pseudo-data (DYD's)
- For individuals far away, the linear approximation is very good
- The same expression works for linear functions of gene contents (i.e. breeding values)
- This is why Legarra et al. (2009) and Christensen \& Lund (2010) arrive to the same expression

Joint distributions

- Using these identities, and summing over all SNPs, we can derive a joint distribution of breeding values

Joint distributions

- Using these identities, and summing over all SNPs, we can derive a joint distribution of breeding values

Unconditional distribution of genetic values of Genotyped individuals
$p\left(\mathbf{u}_{2}\right)=N\left(\mathbf{0}, \mathbf{G} \sigma_{u}^{2}\right)$ and

The assumption of normality of the distributions implies no major genes... as in pedigree BLUP

Joint distributions

- Using these identities, and summing over all SNPs, we can derive a joint distribution of breeding values

$$
\begin{gathered}
\text { Unconditional distribution of genetic values of Genotyped individuals } \\
p\left(\mathbf{u}_{2}\right)=N\left(\mathbf{0}, \mathbf{G} \sigma_{u}^{2}\right) \text { and } \\
\text { Conditional distribution of Non-Genotyped individuals } \\
p\left(\mathbf{u}_{1} \mid \mathbf{u}_{2}\right)=N\left(\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{u}_{2}, \mathbf{A}_{11} \sigma_{u}^{2}-\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} \sigma_{u}^{2}\right)
\end{gathered}
$$

The assumption of normality of the distributions implies no major genes... as in pedigree BLUP

Joint distributions

- Using these identities, and summing over all SNPs, we can derive a joint distribution of breeding values

$$
\begin{aligned}
& \text { Unconditional distribution of genetic values of Genotyped individuals } \\
& p\left(\mathbf{u}_{2}\right)=N\left(\mathbf{0}, \mathbf{G} \sigma_{u}^{2}\right) \text { and } \\
& \text { Conditional distribution of Non-Genotyped individuals } \\
& p\left(\mathbf{u}_{1} \mid \mathbf{u}_{2}\right)=N\left(\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{u}_{2}, \mathbf{A}_{11} \sigma_{u}^{2}-\mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21} \sigma_{u}^{2}\right) \\
& p\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=p\left(\mathbf{u}_{2}\right) p\left(\mathbf{u}_{1} \mid \mathbf{u}_{2}\right) \quad \text { Joint distribution }
\end{aligned}
$$

The assumption of normality of the distributions implies no major genes... as in pedigree BLUP

For BLUP: only covariances are needed

\rightarrow Model in one step (Single Step GBLUP)

Aguilar et al., 2010; Christensen \& Lund, 2010
$\operatorname{Var}\binom{\mathbf{u}_{1}}{\mathbf{u}_{2}}=\mathbf{H}=\left[\begin{array}{ll}\mathbf{H}_{11} & \mathbf{H}_{12} \\ \mathbf{H}_{21} & \mathbf{H}_{22}\end{array}\right]=$
non genotyped

- Incredibly: $\mathbf{H}^{\mathbf{- 1}}$ is very simple:

$$
\mathbf{H}^{-1}=\mathbf{A}^{-1}+\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{G}^{-1}-\mathbf{A}_{22}^{-1}
\end{array}\right]
$$

Single step GBLUP

A: pedigree relationship matrix

This \mathbf{G} is any matrix describing " genomic " covariances of breeding values; it does not restrict to VanRaden's (2008) GBLUP

Single Step Bayes?

- G can be (pre) computed by some method (BayesB, Bayesian Lasso, etc.) to be plugged in:
- TABLUP (Zhang et al. 2010), HetVarGBLUP (Legarra et al. 2011)
- In principle, one can extend the Single Step to nonlinear (Bayesian) models
- Monte Carlo SingleStep BayesB:

```
do i=1,niter
    sample missing genotypes from { { {
    Var}(\mp@subsup{\mathbf{g}}{1}{}|\mp@subsup{\mathbf{g}}{2}{})=(\mp@subsup{\mathbf{A}}{11}{}+\mp@subsup{\mathbf{A}}{12}{}\mp@subsup{\mathbf{A}}{22}{-1}\mp@subsup{\mathbf{A}}{21}{})2p
    a=a+BayesB(all genotypes, all y)
enddo
a=a/niter
```


Computing stuff

- Working with \mathbf{G}^{-1} and $\mathbf{A}_{22}{ }^{-1}$, is a challenge. Because cost of inversion is cubic, this is tenable for $<100,000$ genotypes
- See Aguilar et al. 2011 for details
- However, most modern iteration on data methods (Jacobi, PCG) solve $\mathbf{C x}=\mathbf{b}$ by computing repeteadly $\mathbf{C x}$.
- We know how to do this (very) efficiently for
$\left[\begin{array}{cc}\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{W} \\ \mathbf{W R}^{-1} \mathbf{X} & \mathbf{W R}^{-1} \mathbf{W}+\mathbf{A}^{-1} \sigma_{u}^{-2}\end{array}\right]\left[\begin{array}{l}\hat{\mathbf{b}} \\ \hat{\mathbf{u}}\end{array}\right]=\left[\begin{array}{c}\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\ \mathbf{W}^{\prime} \mathbf{R}^{-1} \mathbf{y}\end{array}\right]$

Computing stuff

- Working with \mathbf{G}^{-1} and $\mathbf{A}_{22}{ }^{-1}$, is a challenge. Because cost of inversion is cubic, this is tenable for $<100,000$ genotypes
- See Aguilar et al. 2011 for details
- However, most modern iteration on data methods (Jacobi, PCG) solve $\mathbf{C x}=\mathbf{b}$ by computing repeteadly $\mathbf{C x}$.

- We also know how to compute (very) efficiently $\mathbf{G x}$ and $\mathbf{A}_{22} \mathbf{x}$ but not $\mathbf{G}^{-1} \mathbf{x}$ or $\mathbf{A}_{22}{ }^{-1} \mathbf{x}$

Two possible solutions follow:

> by Colleau's (2002) algorithm

Extended MME

- Or the unsymmetric equations

For a total number of operations $O(n)+O(m p)$

1- Extended MME

$$
\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{W} \\
\mathbf{W R}^{-1} \mathbf{X} & \mathbf{W R}^{-1} \mathbf{W}+\mathbf{H}^{-1} \sigma_{u}^{-2}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{b}} \\
\hat{\mathbf{u}}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\mathbf{W}^{\prime} \mathbf{R}^{-1} \mathbf{y}
\end{array}\right] \quad \mathbf{H}^{-1}=\mathbf{A}^{-1}+\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{G}^{-1}-\mathbf{A}_{22}^{-1}
\end{array}\right]
$$

- Is equivalent to

$$
\left[\begin{array}{ccccc}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}_{1}^{\prime} \mathbf{R}^{-1} \mathbf{W}_{1} & \mathbf{X}_{\mathbf{\prime}}^{\prime} \mathbf{R}^{-1} \mathbf{W}_{2} & \mathbf{0} & \mathbf{0} \\
\mathbf{W}_{\mathbf{1}} \mathbf{R}^{-1} \mathbf{X}_{1} & \mathbf{W}_{1}^{\prime} \mathbf{R}^{-1} \mathbf{W}_{1}+\mathbf{A}^{11} \sigma_{u}^{-2} & \mathbf{W}_{\mathbf{1}}^{\prime} \mathbf{R}^{-1} \mathbf{W}_{2}+\mathbf{A}^{12} \sigma_{u}^{-2} & \mathbf{0} & \mathbf{0} \\
\mathbf{W}_{2} \mathbf{R}^{-1} \mathbf{X}_{2} & \mathbf{W}_{2}^{\prime} \mathbf{R}^{-1} \mathbf{W}_{1}+\mathbf{A}^{21} \sigma_{u}^{-2} & \mathbf{W}_{2}^{\prime} \mathbf{R}^{-1} \mathbf{W}_{2}+\mathbf{A}^{22} \sigma_{u}^{-2} & \mathbf{I} \sigma_{u}^{-2} & -\mathbf{I} \sigma_{u}^{-2} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{I} \sigma_{u}^{-2} & \mathbf{A}_{22} \sigma_{u}^{-2} \\
\mathbf{0} & \mathbf{0} & -\mathbf{I} \sigma_{u}^{-2} & \mathbf{0} & -\mathbf{G} \sigma_{u}^{-2}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{b}} \\
\hat{\mathbf{u}}_{1} \\
\hat{\mathbf{u}}_{2} \\
\hat{\mathbf{\varphi}} \\
\hat{\gamma}
\end{array}\right]=\left[\begin{array}{l}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\mathbf{W}_{1}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\mathbf{W}_{\mathbf{2}}^{\prime-1} \mathbf{R} \mathbf{y} \\
\mathbf{0} \\
\mathbf{0}
\end{array}\right]
$$

For a total number of operations $O(n)+O(m p)$
as in regular BLUP
as in any genomic evaluation

Extended MME

$$
\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{W} \\
\mathbf{W R}^{-1} \mathbf{X} & \mathbf{W R}^{-1} \mathbf{W}+\mathbf{H}^{-1} \sigma_{u}^{-2}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{b}} \\
\hat{\mathbf{u}}_{1} \\
\hat{\mathbf{u}}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\mathbf{W}_{1} \mathbf{R}^{-1} \mathbf{y} \\
\mathbf{W}_{2}^{\prime} \mathbf{R}^{-1} \mathbf{y}
\end{array}\right] \quad \mathbf{H}^{-1}=\mathbf{A}^{-1}+\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{G}^{-1}-\mathbf{A}_{22}^{-1}
\end{array}\right]
$$

- Has the same solution as

2- Ducrocq's (\& Legara) iterative system

 (Interbull meeting)$$
\left[\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{W} \\
\mathbf{W R}^{-1} \mathbf{X} & \mathbf{W R}^{-1} \mathbf{W}+\mathbf{H}^{-1} \sigma_{u}^{-2}
\end{array}\right]\left[\begin{array}{c}
\hat{\mathbf{b}} \\
\hat{\mathbf{u}}_{1} \\
\hat{\mathbf{u}}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\mathbf{W}_{\mathbf{1}}^{\prime} \mathbf{R}^{-1} \mathbf{y} \\
\mathbf{W}_{2}^{\prime} \mathbf{R}^{-1} \mathbf{y}
\end{array}\right] \quad \mathbf{H}^{-1}=\mathbf{A}^{-1}+\left[\begin{array}{cc}
\mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{G}^{-1}-\mathbf{A}_{22}^{-1}
\end{array}\right]
$$

- Can be solved iterating on

RHS correction for genomic information

1:

3: $\mathbf{A}_{22} \hat{\boldsymbol{\varphi}}=-\hat{\mathbf{u}}_{2}$
Avoid double counting of relationships

For a total number of operations $O(n)+O(m p)$
as in regular BLUP
as in any genomic evaluation

Compatibility of \mathbf{G} and \mathbf{A}

- G and A need to be on the same scale (same base population, same genetic variance)
- Large deviations of HW (e.g. in crossbreds) make theory inadequate
- Solution: build \mathbf{A} and \mathbf{G} according to a crossbred theory (Lo et al., 1993; Harris \& Johnson 2010)
- More work needs to be done

Compatibility of \mathbf{G} and \mathbf{A}

- More generally: allelic frequencies (p) in the base population are unknown
- This is not serious if there is no selection or data files are large (dairy)
- In presence of (old) selection, deviations of both genetic base and genetic variance will exist (Chen et al., 2011; Vitezica et al. 2011; this congress)
- Correction through Wright's Fst (Powell et al; 2010):
- matches « new » and « old » populations
- considers both change of base and reduction in variance

$$
\begin{aligned}
& \mathbf{G}^{*}=\left(1-\frac{\alpha}{2}\right) \mathbf{G}+\mathbf{1 1}^{\prime} \alpha \\
& \alpha=\operatorname{mean}\left(\mathbf{A}_{22}-\mathbf{G}\right)
\end{aligned}
$$

Bias \& inflation

- Genomic predictions in dairy seem to be inflated (biased) (e.g. Aguilar et al. 2011)
- The problem exists also for pedigree-based BLUP
- even in simulations (Vitezica et al., 2011)
- Seems to be alleviated (to some extent) by playing with weights of \mathbf{G} and \mathbf{A}_{22}
- Too odd to be luck...
- Is there anything wrong with basic theory?
- Certainly unrelated base populations are a fallacy
- ...

Why Single Step

- Generality
- DYD's are difficult...
- for maternal traits,
- species with some phenotypes recorded on candidates (beef, swine)
- small progeny numbers (sheep)
- weighting DYD for complex traits (i.e. RR models) is difficult (multivariate equivalent of edc's)
- Consider Ducrocq’s (\& Legara) iterative system

Two-step vs. Single Step

The Single Step can be seen as an iterated « DYD + genomic evaluation » system

Why single step

- Patry \& Ducrocq (2011a) showed that bias will plague national evaluations if selection is based on genomic proofs
- No way of including this in pedigree-BLUP except using pseudodata in the RHS (Patry \& Ducrocq 2011b)
- which is what the Single Step does in an exact manner
- GWAS/estimation of SNP effects can still be done: easy jump between Single Step and SNP effects (Strandén and Garrick, 2009)

Take-home message

- Single Step is simpler than it seems
- Computationally feasible
- Slightly more complex than national pedigree-BLUP
- Compatibility problems solved
- When not to use it?
- If everybody is genotyped (and with no selective genotyping !)
- If somebody comes with a < super-peeling like» algorithm:
- using long-range phasing,
- Mendelian coherence,
- imputing all individuals in a pedigree and
- considering uncertainty in the < data augmentation » procedure

Acknowledgements

- ANR project Amasgen, Apisgene
- GENOMIA funding: www.poctefa.eu

- V Ducrocq
- P VanRaden
- D Johnson
- MA Toro
- ZG Vitezica
- Toulouse bioinformatics platform (bioinfo.genotoul.fr)

