
1

The Single Step: Genomic
Evaluation for all
A. Legarra, I. Misztal, I. Aguilar

INRA, UR 631 SAGA, BP 52627, F-31326 Castanet Tolosan, France
University of Georgia, Department of Animal and Dairy Science, 

Athens, 30602, USA
INIA, Las Brujas, 90200, Uruguay

andres.legarra@toulouse.inra.fr



2

Consider evolution of genetic
evaluation methods

• we (animal breeders) like generality
• Animal populations (particularly ruminants) are complex: 

• For this, popular methods consider all data 
simultaneously

pedigree loops overlapping generations, 
culling heterogeneous information

All relationships (A & A-1) Environmental factors (BLUP)

All records (test-day, repeatability models)
I mean, all records 

(decades of records, avoiding bias due to selection)

All traits - missing data Unknown parent groups
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Consider evolution of genetic
evaluation methods

• Computing was made simpler with more powerful
computers, but 
– once a coherent & elegant framework is established, (almost) 

everything is feasible
– smart people are much more important than brutal force

• Inversion of A
• Iteration on data
• Sparse matrices
• Approximate/iterative methods for reliabilities
• …
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Consider evolution of genomic
evaluation methods

• Very fast use of powerful algorithms
– Gauss-Seidel with Residual Update, PCG

– Lasso / Elastic Net
– EM

• Inclusion of pedigree & fixed effects
• records?
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Single Step as a missing data 
problem

• Methods for genomic evaluation lack of a general way of 
using traits recorded in relatives
– If relatives do not have genotype of their own

• We can see genotype as a missing data problem
(Christensen & Lund, 2010)

• « Genotype » :
– at the SNPs
– at multiallelic markers (haplotypes) 
– at the genes/QTLs themselves

• the following derivations are very general



6

Missing data

Fill-in missing data: data augmentation
• « data augmentation refers to a scheme of augmenting the observed

data so as to make it more easy to analyze » (Tanner & Wong, 
1987)
– Two flavors: EM and Bayesian (Posterior distributions)

• Augmenting = imputation
• In both flavors (EM and Bayesian), the joint distribution

of the imputations needs to be considered
• Consider for instance a very far ancestor

– Its predicted genotype will be the highest of (p2,2pq,q2)
– But actually its distribution is « AA, Aa, aa » with Pr = (p2,2pq,q2)

• Using a point estimator is a poor solution
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(Joint) Uncertainty

• Consider a cow daughter of a genotyped bull

A?

AA ??

AA with Prob p

Aa with Prob q

• Consider the parents of two genotyped bulls

Aa

?? ?? AA - Aa
Aa – AA
Aa – Aa

AA
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Imputation 

• Long-range imputation, linkage-based imputation, 
peeling, etc

• These are the most exact forms of imputation and work
well for 1 or 2 generations or if a subset of markers is
genotyped, but…

• Most often one imputation is the result
• Very hard to come up with the distribution of the 

imputations
– This is in principle feasible by sampling (but very long)
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Linear form of imputation

In the linear world everything is simpler
• Consider gene content at a locus 

g = {0,1,2 for aa,aA,AA}

• Consider two individuals i and j
• The basic identity is (Falconer; Cockerham, 1969):

– Cov(gi,gj) = Pr(IBD)2pq
• Can we predict gene content of j from gene content of i ?
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Understanding covariance of gene
content

• To each one of the 2M founder alleles 
we assign a tag g saying if the allele 
is A (g=1) or a (g=0) with probability p
and q=1-p

• What is the covariance 
between g1 and g9 ?

• 9 might inherit alleles from 1
– With probability Pr(IBD) between 1 

and 9

• 9 might inherit alleles from 4
– With probability Pr(IBD) between 4 

and 9

• …and so on
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Linear form of imputation

• Therefore we can predict gene content of j from gene content of i
– And its distribution (uncertainty)

( ) ( )
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• This is an approximation: linkage & mendelian rules (incompatibilities) are 
not used

– But the same approximation is done working with pseudo-data (DYD’s)

– For individuals far away, the linear approximation is very good

• The same expression works for linear functions of gene contents (i.e. 
breeding values)

– This is why Legarra et al. (2009) and Christensen & Lund (2010) arrive to the 
same expression

This is simple selection index 
machinery
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Joint distributions

• Using these identities, and summing over all SNPs, we
can derive a joint distribution of breeding values

The assumption of normality of the distributions 
implies no major genes… as in pedigree BLUP
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Joint distributions

• Using these identities, and summing over all SNPs, we
can derive a joint distribution of breeding values

( ) ( )2
2 , andup N σ=u 0 G

Unconditional distribution of genetic values of Genotyped individuals

The assumption of normality of the distributions 
implies no major genes… as in pedigree BLUP
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Joint distributions

• Using these identities, and summing over all SNPs, we
can derive a joint distribution of breeding values

( ) ( )2
2 , andup N σ=u 0 G

Unconditional distribution of genetic values of Genotyped individuals

Conditional distribution of Non-Genotyped individuals

( ) ( )1 2 1 2
1 2 12 22 2 11 12 22 21, u up N σ σ− −= −u u Α A u Α Α A Α

The assumption of normality of the distributions 
implies no major genes… as in pedigree BLUP
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Joint distributions

• Using these identities, and summing over all SNPs, we
can derive a joint distribution of breeding values

( ) ( )2
2 , andup N σ=u 0 G

( ) ( ) ( )1 2 2 1 2,p p p=u u u u u

Unconditional distribution of genetic values of Genotyped individuals

Conditional distribution of Non-Genotyped individuals

( ) ( )1 2 1 2
1 2 12 22 2 11 12 22 21, u up N σ σ− −= −u u Α A u Α Α A Α

The assumption of normality of the distributions 
implies no major genes… as in pedigree BLUP

Joint distribution
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• Incredibly: H-1 is very simple:

����Model in one step (Single Step GBLUP)

( )
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For BLUP: only covariances are needed

Aguilar et al., 2010; Christensen & Lund, 2010
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Single step GBLUP

1 1 1

1 1 1 2 1
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W: incidence matrix of all 
animals on all data

A: pedigree 
relationship matrix

G
This G is any matrix describing
« genomic » covariances of 
breeding values; 
it does not restrict to VanRaden’s
(2008) GBLUP

A22: pedigree matrix among
genotyped individuals



18

Single Step Bayes?

• G can be (pre) computed by some method (BayesB, 
Bayesian Lasso, etc.) to be plugged in:
– TABLUP (Zhang et al. 2010), HetVarGBLUP (Legarra et al. 2011)

• In principle, one can extend the Single Step to non-
linear (Bayesian) models

• Monte Carlo SingleStep BayesB:
do i=1,niter

sample missing genotypes from

a=a+BayesB(all genotypes, all y)

enddo

a=a/niter
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Computing stuff

• Working with G-1 and A22
-1, is a challenge. Because cost of inversion 

is cubic, this is tenable for < 100,000 genotypes
– See Aguilar et al. 2011 for details

• However, most modern iteration on data methods (Jacobi, PCG) 
solve Cx=b by computing repeteadly Cx.

• We know how to do this (very) efficiently for 

1 1 1

1 1 1 2 1
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Iteration on data
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Computing stuff

• Working with G-1 and A22
-1, is a challenge. Because cost of inversion 

is cubic, this is tenable for < 100,000 genotypes
– See Aguilar et al. 2011 for details

• However, most modern iteration on data methods (Jacobi, PCG) 
solve Cx=b by computing repeteadly Cx.

• We know how to do this (very) efficiently for 

• We also know how to compute (very)  efficiently Gx and A22x but not G-1x or 
A22

-1x

Two possible solutions follow: by Colleau’s (2002) 
algorithm

Iteration on data

as Gx=Z(D(Z’x))
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Extended MME

• Or the unsymmetric equations

For a total number of operations O(n)+O(mp)
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1- Extended MME
1 1
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• Is equivalent to
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For a total number of operations O(n)+O(mp)

as in regular BLUP
as in any genomic evaluation
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Extended MME
1
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• Has the same solution as
1 1 1 1
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Regular BLUP
Genomic stuff

Separate the two blocks of equations
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2- Ducrocq’s (& Legarra) iterative system 
(Interbull meeting)

1

1 1
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• Can be solved iterating on
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Gγ u
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RHS correction for 
genomic information

Deviations due to 
genomics

Avoid double 
counting of 
relationships

For a total number of operations O(n)+O(mp)

as in regular BLUP

as in any genomic evaluation

Similar schemes can iterate over pedigree 
BLUP and SNP effects

regular MME
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Compatibility of G and A
• G and A need to be on the same scale (same base population, 

same genetic variance)
– Large deviations of HW (e.g. in crossbreds) make theory inadequate

– Solution: build A and G according to a crossbred theory (Lo et al., 
1993; Harris & Johnson 2010)

– More work needs to be done
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Compatibility of G and A
• More generally: allelic frequencies (p) in the base population are 

unknown
– This is not serious if there is no selection or data files are large 

(dairy)

– In presence of (old) selection, deviations of both genetic base and 
genetic variance will exist (Chen et al., 2011; Vitezica et al. 2011; this congress)

• Correction through Wright’s Fst (Powell et al; 2010):
– matches « new » and « old » populations
– considers both change of base and reduction in variance

( )
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α α

α

  ′= − + 
 

= −

G G 11

A G
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Bias & inflation

• Genomic predictions in dairy seem to be inflated (biased) 
(e.g. Aguilar et al. 2011)

– The problem exists also for pedigree-based BLUP
• even in simulations (Vitezica et al., 2011)

– Seems to be alleviated (to some extent) by playing with weights
of G and A22

– Too odd to be luck…

• Is there anything wrong with basic theory?
– Certainly unrelated base populations are a fallacy

– …
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Why Single Step

• Generality

• DYD’s are difficult…
• for maternal traits, 
• species with some phenotypes recorded on candidates (beef, 

swine)
• small progeny numbers (sheep)

– weighting DYD for complex traits (i.e. RR models) is
difficult (multivariate equivalent of edc’s)

• Consider Ducrocq’s (& Legarra) iterative system
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1 1 1 1
1 1 2 2
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A φ u

Two-step vs. Single Step

( )2 ˆ ˆuσ −+ −γ φ

Pedigree-based BLUP

~DYD’s

correction for double 
counting

The Single Step can be seen as an iterated
« DYD + genomic evaluation » system

No need for weights because
MME and the iterative

process take care of them
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Why single step

• Patry & Ducrocq (2011a) showed that bias will plague national 
evaluations if selection is based on genomic proofs
– No way of including this in pedigree-BLUP except using pseudo-

data in the RHS (Patry & Ducrocq 2011b)
– which is what the Single Step does in an exact manner

• GWAS/estimation of SNP effects can still be done: easy jump
between Single Step and SNP effects (Strandén and Garrick, 2009)

1ˆ ˆ−′=a DZ G u
SNP effects

EBV’s
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Take-home message

• Single Step is simpler than it seems
– Computationally feasible

• Slightly more complex than national pedigree-BLUP 

• Compatibility problems solved
• When not to use it?

– If everybody is genotyped (and with no selective genotyping !)
– If somebody comes with a « super-peeling like » algorithm:

• using long-range phasing, 
• Mendelian coherence, 
• imputing all individuals in a pedigree and 
• considering uncertainty in the « data augmentation » procedure
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