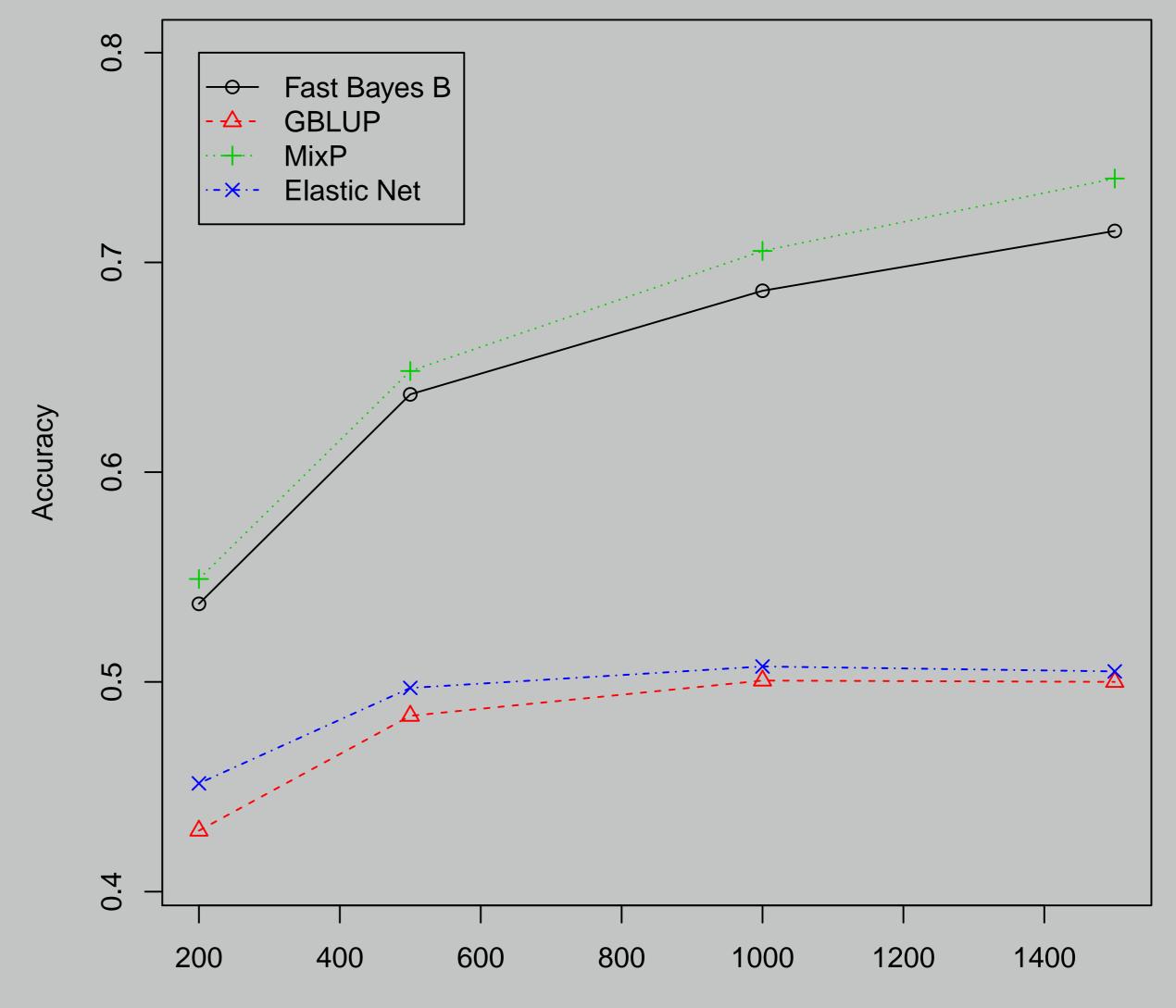
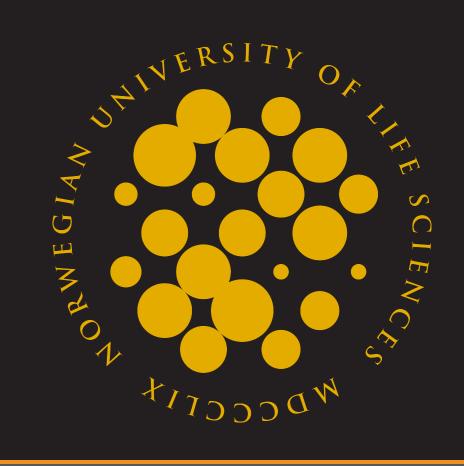
Genome-Wide Breeding Value Estimation with Elastic Net

Xijiang Yu and Theo Meuwissen

RESULTS: Simulation Data


Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, 1432, Ås, Norway


OBJECTIVES

To test the Elastic Net on GWEBV estimation with simulated and real data.

INTRODUCTION

- Genomic-wide breeding value (GWEBV) estimation is often facing with the problem of $p \gg n$
- I.e., the number of genotype values to be estimated (p) is great greater than the number of phenotypic observations (n).

Α

- Several regularization methods were proposed to solve such problems, for example:
 - ► The Bayesian Lasso (Tibshirani, 1996).
 - ► The Elastic Net (Zou et al, 2005).

MATERIALS

Simulation

- Based on a real pedigree of Norwegian Red Cattle
 - ▶ 8 generations
- ► 19,523 individuals.
- Ideal populations

Number of markers

comparison of accuracy of Fast-Bayes-B, GBLUP, MixP and Elastic Net Number of QTL simulated per chromosome is 5, which explain 2% of total phenotypic variance.

Accuracy is measured with the correlation coefficient between GWEBV and true values.

RESULTS: Wheat Data

Yield1234Fast Bayes B0.520.490.380.44GBLUP0.530.500.390.46MixP0.530.500.400.46Enet0.530.500.380.45

- Effective size $N_e = 200$.
- One 1M chromosome, 10⁸ base pairs.
- Mutation rate $10^{-8}/M/meiosis$.
- ► Random mating of 10⁴ generations.
- Genotypes of ideal populations were dropped through founders into the real pedigree.
 Newest 250 individuals are as validation set.
- ▷ 1,915 bulls are as training set.
- ⊳ 200 repeats.

METHODS

- Wheat data set (Crossa et al, 2010).
 - 599 wheat lines, 1,447(1,279) markers
 10 repeats of random 10-fold cross-validation

Accuracy is measured with correlation coefficient between GWEBV and phenotypic values.

No significant accuracy difference of different methods was observed.

CONCLUSIONS

- With few QTL, the elastic net is better than GBLUP, but less accurate than MixP and Fast Bayes B.
- Its computation speed is at the same order of GBLUP and MixP.
- No accuracy difference between estimation methods was found in real wheat data.

REFERENCES

Crossa J et al., Genetics 2010, 186(2):713-724

The elastic net methods
 Data (X, y). X is the n × p predictor matrix of standardized variables; and y is the response vector.

$$\hat{\beta} = \arg\min_{\beta} \|\mathbf{y} - \mathbf{X}\beta\|^2 + \lambda_2 \|\beta\|^2 + \lambda_1 \|\beta\|_1$$

Other methods for comparison

Fast Bayes B (Meuwissen et al, 2009)
 GBLUP (Meuwissen et al, 2001)

▷ MixP (Yu et al, 2011)

Meuwissen TH et al., Genetics 2001, 157(4):1819-29

Meuwissen TH et al., Genet Sel Evol 2009, 41:2

▷ Tibshirani R, J R Statist Soc B 1996, 58(1):267-288

▷ Zou H et al., J R Statist Soc B 2005, 67(2):301-320

ACKNOWLEDGMENT

Norwegian research council
 GENO AS
 CIMMYT's Global Wheat Program

