

WHITE PAPER

FOOD SECURITY AND CLIMATE CHANGE

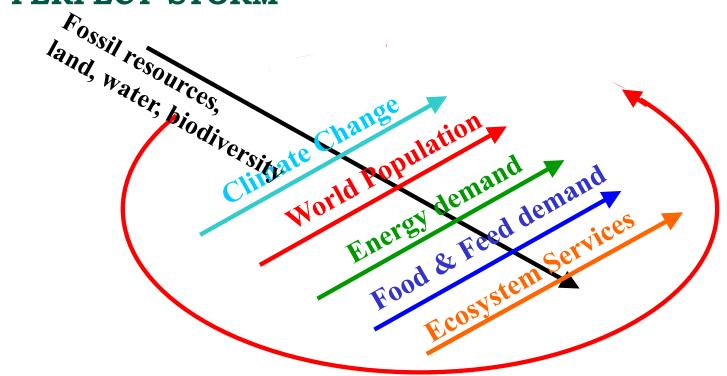
ANNE-MARIE NEETESON

THIS PRESENTATION

- Animal Breeding and Reproduction
- White Paper
- Food Security and Climate Change
- How can Animal Breeding and Reproduction make a difference

Animal Breeding and Reproduction

- Europe is on the forefront in animal breeding
 - Supplier genetics
 - 30-50% European breeding populations
 - ▶ **global trade** of breeding stock
 - Ownership is often in European hands, esp poultry
 - + Strong **knowledge** nodes (across species)
 - Development genetics-reproduction + support
 - In house close relationships to EU/global universities/institutes



WHITE PAPER FOOD SECURITY AND CLIMATE CHANGE

- Further to the SRA work
 - 13 FABRE TP expert groups
- Detailing the challenges and opportunities coming from Food Security + Climate Change
- Focused basis for future research planning and funding
 - To offer informally to the Joint Programming Initiative Agriculture, Food Security and Climate Change
 - National funding driven programme of 20 countries
 - o www.faccejpi.com

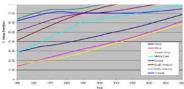
A PERFECT STORM*

A "perfect storm" of food shortages, scarce water and insufficient energy resources threaten to unleash public unrest, cross-border conflicts and mass migration as people flee from the worst-affected regions.

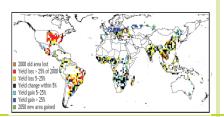
Prof. John Beddington, UK Chief Scientific Adviser


* JPI Food Security and Climate Change ppt July 2011

Food Security: Outlook Global Food Demand


Population Change 1950/2050

- Population Change + 35-50%
 - 1 billion hungry
 - ↑ 70% food production by 2050



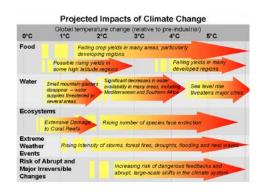
- Demand driven **livestock** revolution (Delgado et al)
 - Upcoming economies eating meat starting with chicken
 - 2010-2019 renewed expansion of the meat sector is expected for non-OECD countries

 Urbanisation Rate 1950/2050
- Available agricultural land
 - Europe-Asia scarce vs Americas-Africa-Ocean
 - Competition with other functions:
 - urbanisation, nature, energy production
- Availability water, fertilisers, energy

Estimated Yield Effect of Climate Change – Un-irrigated Maize

Food Security Outlook Global Food Demand

Population Change 1950/2050


CLIMATE CHANGE

- Agriculture + land use = 30% of emissions
 - need to be part of solutions
 - new and strong emphasis on agricultural research vital for sustainable global development
- Adapation to extremer/different climate/conditions
 - Temperature wet/dry
 - Fluctuations
 - Disease Pathogens
 - Feed, management, population adaptation, reproduction, physiology

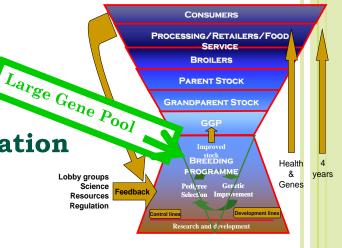
Input-output balance

- J use resources
- demissions
- J waste
- † efficiency

Robustness

First Results

ADAPTATION TO EXTREME - DIFFERENT CLIMATE (1)


More Robust Animals

- Adaptation to high temperatures (reduction heat constraint)
 - Air (livestock) and water (aquaculture)
- Adaptation to crops with less impact on environment (less water dependent) and to reduced nutritional quality
- Increased metabolic functions
- Impact of environmental **epigenetic** effects (use of various genetic and gm models)
- Coping with disease challenge, new pathogens, zoonotic organisms, host-pathogen interactions
 - Animal itself
 - Carriers pathogen human food (gene network knowledge, phenotypic and genotypic predictors)
- Understand biology behind this

ADAPTATION TO EXTREME - DIFFERENT CLIMATE (2)

- Food safety in relation to changing environment
- Reproduction techniques for more varied and extreme climate conditions
- Gene bank maintenance + use
 - Knowledge + skills
- Diversity and 'resilience' of the population
 to adapt in time to changing conditions
 - Diversities of industry populations
 - Diversity of breeds and specialties
- Disease free breeding stock and robust animals
- Development adapted finetuned management knowledge
 - Constant adaptation of management guides to changing circumstances

FABRE •

CLIMATE CHANGE – INPUT OUTPUT BALANCE Description | Emissions | E

- o GHG and mineral emissions
 - easy **measurable** indicator **traits** that can be included in selection
- Understanding biology
 - underpinning differences in animal environmental impact
- Data on emissions and options for reduction
 - in different environments diets per physiological stage (pregnancy, lactation etc) age G x E
- Combination targeted genetic improvement of environmental footprint with
 - production (food security demand)
 - Basic principles and technology in principle available and implemented – needed:
 - o Data to support estimation of relative weightings,
 - Covariances with production and functional traits

CLIMATE CHANGE - INPUTOUTPUTBALANCE | WASTE

- Re-use animal products
- Utilisation of by-products food production
- Traits, methods to measure, genotypes

CLIMATE CHANGE – INPUT OUTPUT BALANCE FOOD SECURITY

- Considerable improvements achieved
- Further improvements needed
- Efficiency and other improvements should be obtained **simultaneously** in broad breeding programmes balancing antagonistic effects
 e.g. growth and welfare

Inputs

Impacts & resources used / t of carcass, / 20,000 eggs (~ 1 t) or / 10m ³ milk (about 1 t)	Beef	Pig meat	Poult meat	Sheep meat	Eggs	Milk
Primary energy used, GJ	28	17	12	23	14	25
GWP ₁₀₀ , t CO ₂	16	6.4	4.6	17	5.5	10.6
Eutrophication potential,kg PO ₄ ³⁻	158	100	49	200	77	64
Acidification potential, kg SO_2	471	394	173	380	306	163
Pesticides used, dose ha	7.1	8.8	7.7	3.0	7.7	3.5

FABRE • TP

GWP=Global Warming Potential

Inputs

/ t of carc	resources used ass, / 20,000 eggs (~ Beef meat meat meat	Eggs	Milk
1 t) or / 10m ³	40 years selection		
Primary	FCR*	3 14	25
GWP ₁₀₀ ,		7 5.5	10.6
Eutrophi potential) 77	64
Acidifica SO ₂	/ kg meat	306	163
Pesticide		7.7	3.5

GWP=Global Warming Potential

Life Cycle Analysis Modelling - Outputs

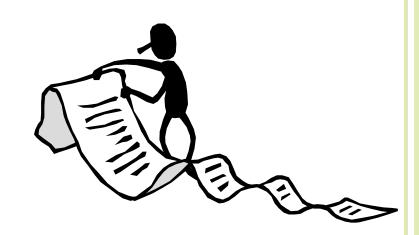
% change in emissions per tonne product through genetic improvement (1988-2007)

	Methane	Ammonia	Nitrous Oxide	GWP ₁₀₀
Layers	-30	-36	-29	-25
Broilers	-20	10	-23	-23
Pigs	-17	-18	-14	-15
Dairy	-25	-17	-30	-16
Beef	O	O	O	0
Sheep	-1	O	O	-1

Project for Defra by Genesis Faraday and Cranfield University (AC0204), 2008 These figures exclude any post-farm-gate efficiencies such as reduced waste. GWP=Global Warming Potential

EFFICIENCY AND ENVIRONMENT IMPROVEMENTS OVER TIME AT PRODUCTION LEVEL

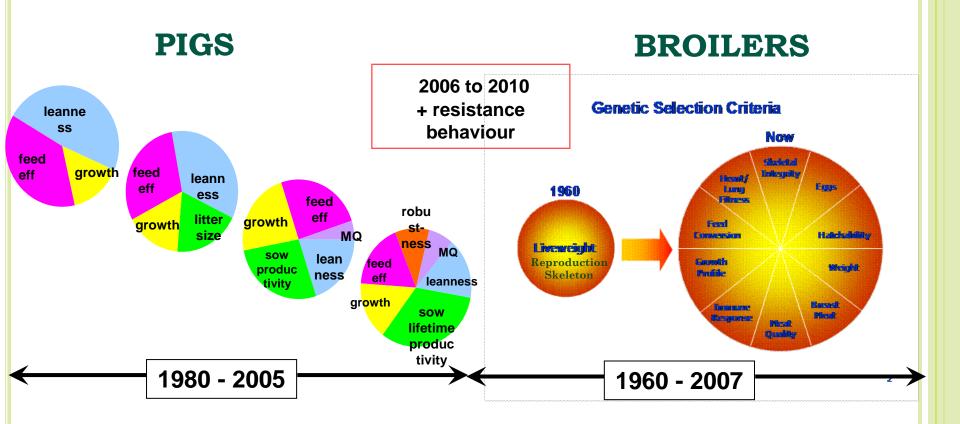
Species	Trait	Indicative performance		
		1960s	2005	% Change
Pigs	Pigs weaned /sow/year	14	21	50
	Lean %	40	55	37
	Kg lean meat/tonne feed	85	170	100
Broiler chickens	Days to 2 Kg	100	40	60
	Feed conversion ratio	3.0	1.7	43
Layer hens	Eggs per year	230	300	30
	Eggs/tonne feed	5000	9000	80
Dairy cows	Milk/cow/lactation (Kg)	6000	10,000	67


Modified from van der Steen, Prall and Plastow, 2005 J. Anim Sci 83: E1-E8

OPPORTUNITIES EFFICIENCY

o Trait improvement on

- Feed efficiency
- Digestibility
- Water efficiency......



Adaptation livestock to

- intensive production systems
 - Especially in highly dense areas, fast growing developing countries
 - For more effective control of GHG and mineral emissions
- reduced chemotherapeutics use

BROADENING BREEDING GOALS

Acknowledgement: Ken Laughlin

PREREQUISITES BROAD BALANCED BREEDING

- Good Traits
 - Reliable
 - Repeatable,
 - Easily measurable in large amounts
- Powerful Computers
- Data
 - A steady flow cost-effectively, reliably, repeatably
 recorded traits on thousands of individually identified
 pedigreed animals, managed in a sophisticated data base
- Good Breeding Programming
 - Inclusion of new traits
 - Implementation genomics
 - Constant development + further finetuning

SCIENCE, AMONG OTHERS...

Genetic relationships change over tim
Phenotypes always needed

- Genomes and way they function
- Genomics tools developments
- Tools for genetics and physiology
- Evaluate consequences of using new methods
- Effective and practical reproduction
- Data comparability
- Ontology

Standardisation public data
For science, transparency, visibility
improvements

- Moving from
 - Farming systems to production systems
 - Law only to Corporate responsibility
 - Descriptive to Solving research
 - E.g. welfare: from behaviour science to the right fit:

the optimal animal for a defined production system with fine-tuned management support

Thank you for your attention

Success to the Expert Groups

Questions?

