62nd EAAP Annual Meeting, Stavanger, Norway, August 29th –September 1st 2011

Universit de Lièg

Estimating Myostatin gene effect on milk performance traits using estimated gene content for a large number of non-genotyped cows

B.Buske¹, M.-L. Vanrobays^{1,*}, M. Szydlowski^{1,3}, C. Verkenne¹, and N. Gengler^{1,2}

* Presenting author replacing B. Buske
 1 Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège – Gembloux, Belgium
 2 National Fund for Scientific Research (FRS-FNRS) – Brussels, Belgium
 3 Department of Genetics and Animal Breeding, Poznan University of Life Science – Poznan, Poland

Context

Situations

 where estimation of single gene effects for quantitative traits is important

Different scenarios

- ↗ genetic gain:
 - By selecting animals with desirable gene variants

To avoid overemphasis on single gene variants

Context

- Difficult to obtain reliable estimates
 - Not all (few) genotyped animals
 - Genotyping more → Expensive
 - Genotyping all → Impossible
- Other solution: estimating missing genotypes
 - Different methods (e.g., Van Arendonk et al., 1981)
 - Estimating gene content (number of alleles) (Gengler *et al.*, 2007)

Context

- Deletion in Myostatin gene: `mh' allele
 - Responsible for double-muscling in all cattle breeds (Bellinge *et al.*, 2005)
 - Present in Dual-Purpose Belgian Blue (DP-BBB)
 - Influence on milk performance traits?
 - But, not well known \rightarrow few genotyped animals
 - However, important in DP-BBB & used as selection tool

Estimation of `mh' allele effect on milk production traits

Data structure & genotypes

- Data used for the official routine genetic evaluation for Walloon Region of Belgium
- 13,992,889 test-day records for 1st, 2nd & 3rd lactation
 - 799,778 cows
 - Breeds:

> Holstein, Belgian Blue Breed (BBB), Others Red-White breeds

Mixed herds and crossbreds

Heterogeneous breed composition

Additional issue for genotype estimation

- Data structure & genotypes
 - Pedigree file: 1,429,939 animals
 - 1,416 genotyped DP-BBB animals (\rightarrow 1,183 cows)
 - Few genotyped animals

>Can other genotypes be assumed?

Addition «assumed» known genotypes
BBB animals (sires) from the meat type
Used for AI
Born after 1985
Assumed to be mh/mh (n=830)
Purebred non-BBB animals

Assumed to be +/+ (n=659,971)

Gene content estimation

- For other animals (n=767,722)
 - Estimation of gene content (Gengler et al., 2007)

– For the founders

- 10 genetic groups
 - ≻According to breed
 - ≻By distinguishing:
 - BBB & non-BBB animals
 - Herd-book type of animal (meat & DP)
 - Year of birth

Estimated gene content of non-genotyped animals Development of Myostatin gene content over time

Group of animals	Estimated average gene content ¹	Number of individuals
Non-BBB	0.002	924,325
BBB-M 1971 to 1980	0.532	10,694
BBB-M 1981 to 1990	1.352	37,479
BBB-M 1991 to 2000	1.817	74,761
BBB-M > 2000	1.931	42,504
DP-BBB 1971 to 1980	0.798	358
DP-BBB 1981 to 1990	1.186	4,034
DP-BBB 1991 to 2000	1.176	4,687
DP-BBB > 2000	1.239	2,347

BBB = Belgian Blue Breed; M = meat type; DP = dual-purpose type.

¹Values between 0 (+/+) and 2 (mh/mh) represent the gene content for 'mh' allele

Estimated gene content of non-genotyped animals Development of Myostatin gene content over time

Group of animals	Estimated average gene content ¹	Number of individuals		
Non-BBB	0.002	924,325		
BBB-M 1971 to 1980	0.532	10,694		
BBB-M 1981 to 1990	1.352	37,479		
BBB-M 1991 to 2000	1.817	74,761		
BBB-M > 2000	1.931	42,504		
DP-BBB 1971 to 1980	0.798	358		
DP-BBB 1981 to 1990	1.186	4,034		
DP-BBB 1991 to 2000	1.176	4,687		
DP-BBB > 2000	1.239	2,347		

BBB = Belgian Blue Breed; M = meat type; DP = dual-purpose type.

¹Values between 0 (+/+) and 2 (mh/mh) represent the gene content for 'mh' allele

Estimated gene content of non-genotyped animals Development of Myostatin gene content over time

Group of animals	Estimated average gene	Number of individuals		
Non-BBB	0.002	924,325		
BBB-M 1971 to 1980	0.532	10,694		
BBB-M 1981 to 1990	1.352	37,479		
BBB-M 1991 to 2000	1.817	74,761		
BBB-M > 2000	1.931	42,504		
DP-BBB 1971 to 1980	0.798		358	
DP-BBB 1981 to 1990	1.186		4,034	
DP-BBB 1991 to 2000	1.176		4,687	
DP-BBB > 2000	1.239	↓ ↓	2,347	

BBB = Belgian Blue Breed; M = meat type; DP = dual-purpose type.

¹Values between 0 (+/+) and 2 (mh/mh) represent the gene content for 'mh' allele

Estimated gene content of non-genotyped animals

– Hypothesis

- Necessity to use genetic groups and to include animals with assumed genotypes to obtain valid estimations of gene content
- To test this hypothesis
 - Estimation without these genetic groups & assumptions
 - Estimated mean gene content of 1.349
 - Unrealistic results because:
 - Extreme founder allele frequency obtained only from genotyped BBB animals
 - Weak or non-existing (different breeds) links between genotyped and non-genotyped animals

Estimated gene content of non-genotyped animals

- More realistic results
- Show potential for gene content estimation with:
 - Use of genetic groups
 - Use of assumptions
 - » when few genotyped animals in a large heterogeneous population under selection

However, its accuracy depends mainly on:

- オ with increasing number of genotyped relatives
- when closer relationships between genotyped and non-genotyped animals

- Statistical model to estimate `mh' effect
 - Based on routine genetic evaluation model for milk production traits (Auvray & Gengler, 2002; Croquet *et al.*, 2006)
 - Multi-lactation, multi-trait random regression model
 - (Co)variance components
 - + Fixed regression on observed or estimated gene content

Standard errors for regression coefficients

• Mixed model conjugate gradient normal equations (Harville, 1979; Croquet *et al.*, 2006)

Allele substitution effects of the `mh' allele

 On milk, fat and protein yield (kg/305 days) through all lactations & for each lactation (n= 13,992,889)

Lactation										
	Mean	1			2		3			
Trait	Effect	Effect	s.e.	<i>t</i> -value	Effect	s.e.	<i>t</i> -value	Effect	s.e.	<i>t</i> -value
Milk	-76.06	-70.80	8.30	8.53***	-72.88	10.07	7.24***	-84.52	12.14	6.92***
Fat	-3.62	-3.02	0.35	8.62***	-3.76	0.44	8.55***	-4.09	0.53	7.71***
Protein	-2.84	-2.57	0.25	10.28***	-2.84	0.32	8.88***	-3.10	0.38	8.71***

\checkmark 1 copy of the 'mh' allele

Very high significant decrease in milk, fat and protein yields

Additive effects

The power to detect a candidate gene effect depends

- on the magnitude of the effect that was estimated
- on the standard error of this estimation
- In this study, estimated `mh' allele effects were large enough to be significant
 - Although standard errors 7 with increasing lactation number
 - Because less records in higher lactation number
- However,
 - Potentially biased allele effect estimation as effects lower than in other studies (Buske *et al.*, 2010)
 - Selection of animals for genotyping randomly?
 - Inclusion of a large number of animals with estimated genotypes?

Conclusion

- To estimate more accurately gene content of large heterogeneous population
 - Inclusion of additional assumptions
 - As information about genetic groups (here based on breeds, phenotypic selection and year of birth)
 - Groups expressing differences in expected founders allele frequencies
- Estimation of the `mh' allele effect possible

Thank you for your attention

Acknowledgments National Fund for Scientific Research Support for N. Gengler (Research Associate) Walloon Regional Ministry, SPW – DGO3 Project D31-1224/S1 Walloon Breeders Association

