

The Irish Agriculture and Food Development Authority

Effect of sire breed and genetic merit for carcass weight on the transcriptional regulation of the somatotropic axis in *M. longissimus dorsi* of crossbred steers

S.M. Keady 1, 2, D.A. Kenny 1, M.G. Keane 3 and S.M. Waters 1

1Animal and Bioscience Research Department, Teagasc Grange, Co. Meath, Ireland

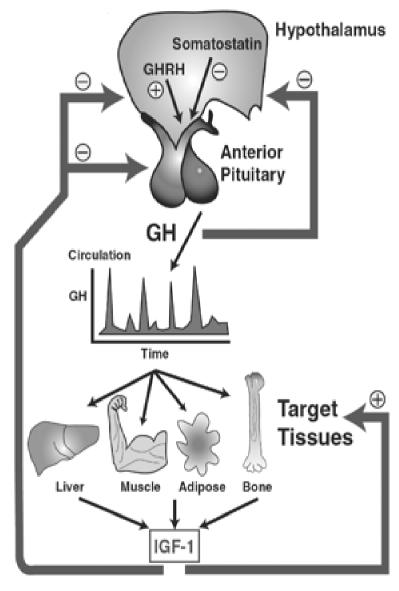
2National University of Ireland, Maynooth, Ireland

3Livestock Systems Research Department, Teagasc Grange, Co. Meath, Ireland

Somatotropic Axis

•Consists of:

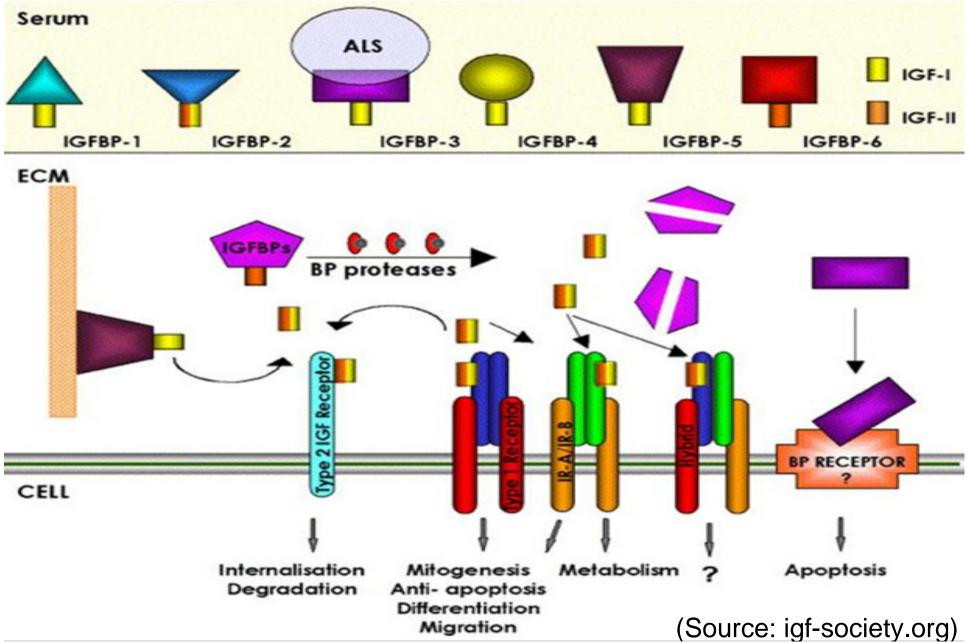
Growth hormone (GH)


GH receptors (GHR)

IGF-1 and IGF-2

Receptors (IGF-1R, IGF-2R)

Carrier proteins (IGFBP)


 Additionally, IGF-1 produced locally by tissues

(Kopchick *et al.*, 2002)

IGF-1, IGF-2 and IGFBPs

Objective

- The objective of this study was to determine the effect of:
 - (i) sire breed
 - (ii) sire EPDcwt

on the mRNA expression of genes of the somatotropic axis in *M. longissimus dorsi* in Aberdeen Angus (AA) and Belgian Blue (BB) cattle.

Animal model

- 17 Aberdeen Angus x Holstein Friesian (AA)
- 16 Belgian Blue x Holstein Friesian (BB)
- Sired by bulls with either high (H) or low (L) expected progeny difference for carcass weight (EPDcwt)

Contents lists available at ScienceDirect

Livestock Science

journal homepage: www.elsevier.com/locate/livsci

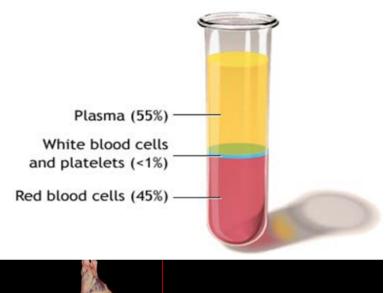
Evaluation of estimated genetic merit for carcass weight in beef cattle: Live weights, feed intake, body measurements, skeletal and muscular scores, and carcass characteristics

B. Campion a,b, M.G. Keane a,*, D.A. Kenny b, D.P. Berry c

a Teagasc, Grange Beef Research Centre, Dunsany, Co. Meath, Ireland

^b School of Agriculture, Food Science & Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland

^c Teagasc. Moorepark Dairy Production Research Centre, Fermov, Co. Cork, Ireland


Methodology


Blood collection

- •7, 14, 18 and 24 months
- •IGF-1 and insulin

Tissue collection

- •M. longissimus dorsi
- •Snap frozen in liquid N₂
- •Stored at 80 °C

Data analysis

RT-qPCR

- Total RNA extracted
- cDNA synthesised
- Primers designed
- Reference gene chosen using NormFinder (GAPDH)
- Real time RT-qPCR
- Efficiency calculated

GenEX software v4.2.2

- Efficiency correction
- Normalisation to GAPDH
- Calculation of values relative to the greatest Ct

Statistical analysis

- PROC MIXED, SAS
- Spearman correlation

Results

Table 1: Blood profiles

 No effect of breed or EPDcwt on plasma concentrations IGF-1 and insulin

	Br	eed		EP.	D _{cwt}			Ti	me (T)		_		<i>P</i> -Values	
Trait	AA	BB	SED	H	L	SED	7 mo	14 mo	18 mo	24 mo	SEM	B	EPD _{cwt}	T
IGF-1, ng/mL	249.5	275.3	40.54	255.7	268.9	40.61	132.8	271.9	288.2	309.7	28.5	0.579	0.747	<0.001
Insulin, μIU/mL	12.3	14.5	1.54	13.5	13.3	1.55	3.48	5.98	7.52	19.43	1.32	0.175	0.877	<0.001

Table 2: Effect of breed and EPD_{cwt} on the relative expression of genes of the somatotropic axis

	Breed			EPI) _{cwt}		<i>P</i> -Values			
Gene	AA	BB	SED	Н	L	SED	В	$\mathrm{EPD}_{\mathrm{cwt}}$	$B \times EPD_{cw}$	
IGF-1	6.83	5.12	0.948	7.60	4.36	0.973	0.091	0.004	0.154	
IGF-1R	17.2	2.81	2.833	8.41	11.6	2.883	0.0003	0.781	0.496	

IGFBP3 57.9 4.61 10.23 41.4 21.2 10.23 <0.0001 0.239 0.002	IGFBP3	57.9	4.61	10.23	41.4	21.2	10.23	< 0.0001	0.239	0.025
--	--------	------	------	-------	------	------	-------	----------	-------	-------

Table 3: Associations between genes of the somatotropic axis and production traits

Gene	Slaughter weight, kg	Carcass weight, kg	UMD ¹ ,	<i>M. longissimus</i> <i>dorsi</i> area, cm²	<i>M. longissimus</i> <i>dorsi</i> area, cm²/kg
IGF-1R				-0.55 ***	-0.41 ***
IGFBP3			-0.37 *	-0.63 ***	-0.40 *

Summary of Results

- Plasma concentrations of IGF-1 and insulin
 - No effect of breed or EPDcwt
- Gene expression
 - IGF-1 up-regulated in H
 - IGF-1R up-regulated in AA
 - AA had greater levels of IGFBP3 in muscle tissue
- Correlations
 - M. longissimus dorsi area was negatively associated with expression of IGF-1R and IGFBP3

Conclusions

- Elevated gene expression of IGF-1 promote growth in vivo supporting many other research findings (Powell-Braxton et al., 1993; Clemmons, 2009)
- Increase in IGF-1 and reduction IGFBP3 greater muscle growth
- IGF-1 and IGFBP3 potential candidates for future investigation of molecular markers for muscle growth

Acknowledgments

Co-authors

- Dr. David Kenny
- Dr. Gerry Keane
- Dr. Sinead Waters

Campion et al. (2009)

Brian Campion

Blood analysis

Penny Furney UCD

Publication

Keady, S. M., D. A. Kenny, M. G. Keane, and S. M. Waters. 2011. J Anim Sci. July 1, 10.2527/jas.2011-4032

Thank you!

Takk

