How to remove bias in genomic predictions ?

Zulma G. Vitezica¹ & Andrés Legarra²

PROBLEM: How selection is accounted for in genomic evaluation is unclear and cause bias

Unbiased predictions are of paramount importance in selection

SOLUTION: Correction factors

 \mathbf{Q} a is simply the difference between means for A₂, and G

 $\alpha = \frac{1}{n^2} \left[\sum_{i} \sum_{j} \mathbf{A}_{22 \ (i,j)} - \sum_{i} \sum_{j} \mathbf{G}_{i,j} \right]$

- Accurate estimates of the genetic trend
- Comparison of animals across generations

OBJECTIVE: propose a method to remove bias of genomic prediction

- Predictions by a single-step method
 - Based on genomic (**G**) and pedigreebased relationship (A) matrices
- For **G** to be correct

- **α** accounts for the fact that genotyped animals are related through pedigree more than **G** is able to reflect

BLUPALPHA

 $G^* = G + 11' \alpha$

Wright's Fst can be defined as the mean relationship between gametes in a recent population with respect to an older base population

$$F_{ST} = \frac{1}{2} mean \left(\mathbf{A}_{22} - \mathbf{G} \right) = \frac{1}{2} \alpha$$

- Base allele frequencies would be required. Unfeasible in practice.
- Two corrections **α** and **Fst** to refer **G** and **A** to the same base population
- Powell et al. (2010) suggested to use **Fst** to correctly compare relationships $\mathbf{G}^{**} = \left(1 - \frac{1}{2}\alpha\right)\mathbf{G} + \mathbf{11'}\alpha$ **BLUP**_{Fst}

Simulation RESULTS:

Means of EBV (h²=0.30) **for selection candidates**

Prediction method High selection Low selection

Conclusion

•Single-step method with correction (either **BLUPALPHA** or **BLUPFst**) was a preferred method for

	TBV=0.53 (0.03)	TBV=2.01 (0.15)
Pedigree BLUP	0.54	2.05
Single Step BLUPALPHA	0.52	2.10
Single Step BLUPFst	0.52	2.10
Single Step BLUP, no correction	0.29	1.41

accounting for bias in genomic predictions

¹INRA, UMR 1289 TANDEM, 31326 Castanet-Tolosan, France, zulma.vitezica@ensat.fr

²INRA, UR 631, 31326 Castanet-Tolosan, France, andres.legarra@toulouse.inra.fr