e-Cow: a web-based model to predict performance of grazing dairy cows with and without supplements

Javier Baudracco N. Lopez-Villalobos C. Holmes E. Comeron K. Macdonald T. Barry

MASSEY UNIVERSITY TE KUNENGA KI PŪREHUROA

http://www.e-cow.net

Grazed pasture cheapest source of feed

Conversion of non-human feed (pastures) into milk and beef

http://www.e-cow.net

BUT

Synchronisation between pasture growth and cow's demand is required

(Lucy et al., 2001)

Modern dairy cow at grazing

Grazing systems, low cost but Require seasonal calving Set constraints to modern cows

Supplements crucial body condition score and reproductive efficiency Genotype x environment interactions

)W http://

Objectives

To develop an animal model

Simulate cow responses to changes in feed supply

Explore genotype x environment interactions

Strong scientific base

- Genetic & nutritional drives
- User-friendly
- Web-based

what what

methodology

e-Cow – Model classification

- Mechanistic model: Represents biology
- Empirical model: mathematical/ statistical equations
- Dynamic model: over one year (daily simulation)
- Level: animal
- Stochastic Pasture allowance

http://www.e-cow.net

PREDICTION

Herbage intake Milk, fat and protein yields Live weight and body condition score

> Daily basis Whole-lactation Holstein-Friesian

http://www.e-cow.net

e-Cow – Model description

e-cow

Integrates 3 models to predict:

Dry matter and energy intake model
(Baudracco *et al.*, 2010)

2. Milk yield - Mammary gland model (Vetharaniam *et al.*, 2003)

3. Body lipid change model (Friggens *et al.*, 2004)

e-Cow – Rationale

Intake = maintenance + milk+ lipid change

If intake is different to demand

Milk yield and body lipid change are reduced/increased Iteration: loop until intake = demand

e-Cow – Model description

How to use the e-Cow model online?

Simple

5 minute training

Inputs screen

p://e-cow.net/		合 -	C 👌 - baudracco cow milk
e 💦 🖌 🖗			
	Simulation of dairy cow's response		Contact us
MASSEY UNIX TE KUNENGA KI PI	VERSITY DIREHUROA C	-Cow	Developed by Javier Baudracco Nicolas Lopez-Villalobo: Marcelo Zamateo
Cow inputs			oes e-Cow rmulate rations?
Genotype ? : New Zealand HF			/hat does
Potential milk vield (kg/cow/v) ? 6970		e-	Cow do?
Pot. milk fat yield (kg/cow/y) 🕐 321			hat type
Pot. milk prot. yield (kg/cow	y) 🕐 🔰 258 🔰		pasture?
Feed inputs			
Start Finish feeding feeding Unit	Pasture Conc Silaqe Hay		nly asture?
1 100 Energy (MJ/kg) ? NDF (%) ?	35 2 0 0 11 12 10.4 10.3 0.44 0.44 0.52 0.55		liket to use
Amount Kg DM ? 101 305 Energy (MJ/kg) ?	35 2 0 0 11 12 10.4 10.3		cow?
Amount Kg DM ?	35 2 0 0 11 12 10.4 10.2	e using: Computer 💌	ow does
Add feeding period<=	0.44 0.44 0.52 0.55	Simulate response	COW WORK?

Outputs screen

Outputs screen

😟 http://e-cow.net/e-Cow-example.php

Pot. yield (kg/cow/y): 9812 Milk yield (kg/cow/y): 6986 Milk fat (kg/cow/y): 247 Milk protein (kg/cow/y): 246 Milk fat (%): 3.53 Milk protein (%): 3.53 Milk solids (kg/cow/y): 493

Use of energy consumed

DM Concent. (kg/cow/y): 768 DM Silage (kg/cow/y): 351 DM Hay (kg/cow/y): 0 DM Herbage (kg/cow/y): 4961 Total DM (kg/cow/y): 6081 Grazing efficiency lactating(%) ? : 32 Grazing efficiency dry(%) ? : 35 ☆ - C

e-Cow – Inputs

Genotype of Holstein Friesian (NA or NZ) Live weight at calving Potential yields of milk, fat and protein Body condition score (BCS) at calving Conception date (days after calving) Dry-off date (milk yield or BCS limit)

Feeding periods

TOW

Herbage allowance (mean and SD - stochastic) Neutral detergent fibre of feeds Metabolisable energy of feeds Supplements offered (amount and utilisation)

validation

Validation dataset

NZ strain trial dataset (Macdonald et al., 2008)

Data from 3 years (3 parities)

Two strains

- North American (NA) > 90% NA genetics
- New Zealand (NZ) \leq 13% NA genetics

http://www.e-cow.net

Validation

CCC= Concordance correlation coefficient reflects both:

- Degree to which predicted Vs actual values cluster about regression line
- Degree to which the regression line adheres to the 45° line through origin

Milk yield

CCC = 0.76

Pasture dry matter intake

CCC = 0.80

Live weight change

CCC = 0.62

simulations

Example using:

High pasture allowance (25 kg/cow/day)

High pasture quality (11 MJ ME/kg)

2 Holstein-Friesian strains

North American HF

New Zealand HF

Practical use of the e-cow model

Teaching

University students

Perform simulations to understand:

Effects of amount of feed offered Effects of feed intake Effects of feed quality Effect of cow's genetic merit on Milk yield Live weight BCS

Practical use of the e-cow model

Applied research

- Effects of feeding level on estimated breeding values
- 5,000 cows with known breeding values
- Predict performance of individual cows at 4 feeding levels
- Genetic evaluation to recalculate breeding values & to estimate breeding values for feed intake and FCE
- Estimation of G x E (reaction norms)

conclusions

Conclusions

Quick simulation of

Response of cows

of

different genetic potential

under

different feeding systems

Useful for

Teaching

Applied research

Extension

Acknowledgements

Massey University, IVABS

New Zealand Society of Animal Production

Nicolas Friggens

Gonzalo Tunon

Monika Zehetmeier

