

MILK Urea Nitrogen(MUN) As Tool To Asses The Nutritional Status Of Buffaloes In Iran

A. G<mark>olgasemgarebagh, R. Pirmohammadi,</mark> and S.F. Goreishi

Present By: Ahad Golghasem Gharehbagh Payame Noor University (PNU) IRAN

Introduction

- Convert low quality noncompetitive feed sources into high quality protein for human consumption
- Adequate Protein and Energy nutrition supply
- Higher demands for milk protein
- Decreasing of environmental N emissions and pollution

- Economical profitability
- Urgent need for on farm diagnostic to monitor the adequacy of protein feeding
- Milk Urea Nitrogen (MUN) used as a management tool to improve dairy herd nutrition

MUN As a Tool Of Management:

- MIIk urea nitrogen used as a signal or "red flag" in feeding program.
- High MUN = excessive dietary cp or low degradable NFC
- MUN testing in feeding management program can following results:

- 1. Precisely meeting nutritional requirements
- 2. Lower feed costs
- 3. Identify over feeding and underfeeding
- 4. Increased reproductive performance
- 5. Increased milk protein yield
- 6. Minimizing nitrogen excretion

- Asia has the most population buffalo in the world (97.2%) (Sarhaddi et al., 2006)
- The buffalo is a native animal of Iran.
- North and north-west (Azerbaijan Province) is the greatest zone of buffalo breeds in Iran
- Buffalo breeding in Iran is the most of under rural condition
- This study was conducted on buffalo and determining of their MUN

Method Collection milk samples

- The province was divided to three region: North, central and south
- Milk sampling was done for 3 month
- Each month : morning and evening
- Milk samples were collected from milk tank

The MUN was estimated by enzymatic kits (De Jong et al, 1992)

 Data were subjected to ANOVA statistical analysis and mean values compare with Duncan test

PAYAM-E NOOR UNIVERSITY (DISTANCE EDUCATION)

Results:

MUN Values (mg/dl) In Buffaloes Milk

Region	Morning	Evening	P value
North	9.71 ^a	10.67 ^a	Ns
Centre	8.65 ^b	8.97 ^b	Ns
South	10.82 ^a	10.84 ^a	Ns

Figures with different superscripts in column differ significantly, P<0.05

- All buffaloes MUN were lower than Normal Range (12-16 mg/dl)
- Evening Samples MUN in all areas were higher than morning
- This results may be due to the difference between feeding and sampling time
- Buffaloes were under rural condition
- and insufficient dietary protein

Herd average MUN: 12-18 mg/dl of milk Individual cow MUN : 8-25 mg/dl of milk

A low MUN (less than 12 mg/dl) indicates:

Low crude protein in the rations

- Improper mix of rumen undegradable and rumen degradable protein and (or)
- High rumen fermentable non-fiber carbohydrate

Conclusion:

- Testing for MUN can be useful, economical and easy tool to flag potential nutrition-related problems
- Breeding in rural condition is very different
- And MUN influenced also by parity, milking frequency, days in milk, season, breed, level of production and sample type

PAYAM-E NOOR UNIVERSITY (DISTANCE EDUCATION)

The End Thanks For Your Attention