

MEETING THE RISING DEMAND FOR **ANIMAL SOURCE** IMPLICA TOR DEOR LAND USE AND NATURAL **RESOURCE IN THE** DEVELOPING WORLD Jimmy Smith and Mario Herrero

ILRI International Livestock Research Institute

Better lives through livestock

THE WORLD BANK

EAAP 2011 –29th August Stavanger, Norway.

OUTLINE

- DRIVERS AND TRENDS
- RESOURCE CONSTRAINTS AND IMPLICATIONS
- HOW TO RESPOND TO RESOURCE CONSTRAINTS

DRIVERS AND TRENDS

Annual growth in per capita consumption of livestock products

DEMAND FOR LIVESTOCK PRODUCTS TO 2050

		Annual per capita consumption		Total consumption	
	year	Meat (kg)	Milk (kg)	Meat (Mt)	Milk (Mt)
Developing	2002	28	44	137	222
	2050	44	78	326	585
Developed	2002	78	202	102	265
	2050	94	216	126	295

POPULATION GROWTH IN DEVELOPING AND INDUSTRIALIZED COUNTRIES: 1750 - 2050

THE LIVESTOCK REVOLUTION

Livestock to 2020: The Next Food Revolution, a joint IFPRI, FAO, ILRI study.

Urbanization

17 BILLION ANIMALS IN DIVERSE FARMING

SYS7 AGRICULTURE AND CONSUMER PROTECTION DEPARTMENT **Global production system map** (FAO/ILRI) **Animal Production and Health Division** Rangeland-based Mixed rainfed Mixed irrigated Hyper arid LGY MRY MIY Urban areas Arid/semi-arid LGA MRA MIA Other Humid/subhumid MRH MIH LGH No data Temperate/tropical highland MIT LGT MRT

MIXED SYSTEMS PRODUCE SIGNIFICANT AMOUNTS OF MILK AND

- MEAT Agro Pastoral
- Mixed Extensive
- Mixed Intensive
- Other

Developed Countries

 DEVELOPED COUNTRIES DOMINATE GLOBAL MILK
 PRODUCTION, SIGNIFICANT
 EXPORT, BUT...

•MIXED SYSTEMS PRODUCE 65% BEEF, 75% MILK AND 55% OF LAMB IN THE DEVELOPHENES et al 2009

RESOURCE IMPLICATIONS

LAND USE

- BY 2050, 33 % MORE PEOPLE TO FEED
- 70 % MORE MEAT AND MILK
- 12 % OF GLOBAL LAND IS CROP LAND (1/3 THEREOF IS FOR FEED)
- 26 % OF GLOBAL LAND IS PASTURE
- EXPANSION OF BIOFUELS WILL
 CONTINUE TO THE FORESEEABLE
 FUTURE
- EXPANDED YIELDS MUST COME FROM PRODUCTIVITY INCREASE

THE WORLD WILL REQUIRE 1 BILLION TONNES OF ADDITIONAL CEREAL GRAINS TO 2050 TO MEET FOOD AND FEED DEMANDS (IAASTD 2009)

160 MILLION MT

SYSTEMS AND LIVELIHOODS IN TRANSITION

Can we influence the next transition for the benefit of society and the environment?

World Land Acquisition

A GLOBAL WATER CRISIS

- 2 BILLION
 PEOPLE LACK
 ACCESS
- DEMAND IS
 GROWING;
 FRESHWATER IS
 GETTING
 SCARCE
- 70 % OF TOTAL
 FRESHWATER
 USE IS FOR
 AGRICULTURE

Water & Population

Sufficiency, Stress, Scarcity

LIVESTOCK AND WATER

- DIRECT WATER USE IS SMALL
- INDIRECT WATER USE AND IMPACT ON WATER CYCLES IS HUGE:
 ✓WATER FOR FEED PRODUCTION.
 ✓IMPACT OF GRAZING ON WATER QUANTITY AND WATER QUALITY.
 ✓WATER POLLUTION FROM LIVESTOCK

AREA UNDER CULTIVATION AND RATES OF GROWTH IN CEREAL YIELDS

Note: Data smoothed by locally weighted regressions.

Source: FAO 2006a. Notes: Cropland represents both arable and permanent cropland.

World Bank 2007

INTERNATIONAL PRICES FOR MAIZE AND SOY

US \$ /TON

LIVESTOCK AND NUTRIENTS

- Manures provide 14%, 9% and 40% of N, P and K inputs for global crop production, respectively.
- Livestock crucial in smallholder systems as a source of fertilizer.
- …but at the same time concentrations of nutrients in industrial systems cause water pollution and waste disposal problems (lack of regulation).
 Herrero et al. 2009

INTENSIVE SYSTEMS: NEED FOR LEARNING FROM PAST EXPERIENCES?

Livestock mediated nutrient overloads (Gerber et al 2002)

THE DEVELOPING WORLD ADOPTED INDUSTRIAL PRACTICES.....

BUT NOT THE

LIVESTOCK AND GREENHOUSE GASES 18% of global emissions (FAO 2006)

HOW TO RESPOND?

SUMMARY OF ISSUES

- DESPITE HIGHER INPUT COSTS, SECTOR GROWTH WILL CONTINUE
- INTENSIVE PRODUCTION HAS LOWER GHG EMISSIONS PER UNIT OF PRODUCT
- HUGE PERFORMANCE GAPS WITHIN SYSTEMS AND ACROSS COUNTRIES
- SOME TECHNICAL SOLUTIONS ARE AVAILABLE BUT INCENTIVES NEED TO BE BETTER ALIGN

SUMMARY OF ISSUES

(CONTINUED) LIVESTOCK IS AT THE CENTRE OF MOST CONTEMPORARY RESOURCE USE ISSUES ---LAND, WATER, ENERGY, NUTRIENTS (AND OF COURSE CLIMATE CHANGE)

- DEMAND FOR LIVESTOCK PRODUCTS WILL LIKELY CONTINUE TO BE STRONG
- EFFICIENCY IS KEY TO REDUCING RESOURCE REQUIREMENTS AND ENVIRONMENTAL IMPACTS;
 - ✓ TECHNOLOGY DEVELOPMENT AND ADOPTION NEED TO ACCELERATE
 ✓ SUPPORTING POLICY FRAMEWORKS ARE NEEDED
 - ✓ STAKEHOLDER PARTICIPATION

SUSTAINABLE INTENSIFICATION BETTER FEEDS

- BETTER BREEDS
- BETTER HEALTH
- PRODUCING AT HIGHER RESOURCE USE EFFICIENCIES (LAND, WATER, NUTRIENTS, GHG) WHERE FEASIBLE
- + MARKETS, INCENTIVES AND OTHERS...

SUSTAINABLE INTENSIFICATION -INSTITUTIONAL ASPECTS • APPROPRIATE POLICIES AND REGULATIONS

- ✓ MANAGING EXTERNALITIES
- ✓ MANAGING NUTRIENT LOADS
- ✓ MANAGING EMISSIONS
- PROMOTING AN ENABLING ENVIRONMENT
- INFRASTRUCTURE DEVELOPMENT

PRODUCTIVITY GAINS AND EFFICIENCY

- INTENSIVE PRODUCTION HAS LOWER GHG EMISSIONS PER UNIT OF PRODUCT
- HUGE PERFORMANCE GAPS WITHIN SYSTEMS AND ACROSS COUNTRIES
- SOME TECHNICAL SOLUTIONS ARE AVAILABLE BUT INCENTIVES NEED TO BE BETTER ALIGNED

EFFECTS OF INTENSIFICATION ON GHG EMISSION INTENSITY – DAIRY SYSTEMS

Gerber et al., 2011

COMPARISON OF RESOURCE INPUTS AND WASTE OUTPUTS: DAIRY PRODUCTION IN 1944 AND 2007 IN UNITED STATES

	1944	2007	
Milk produced, billion kg	53.1	84.2	
	Resources/waste per b	% of 1944	
Total dairy population (10 ³⁾	948	202	21
Resource use			
Feed, kg (10 ⁹)	8.26	1.88	23
Land , Ha (10 ³)	1,705	162	10
Water , Liters (10 ⁹)	10.76	3.79	35
Waste Output			
N excretion, kg (10 ⁶)	17.47	7.61	44
P excretion, kg (10 ⁶)	11.21	3.31	29
Manure, kg (10 ⁹)	7.86	1.91	24
GHG emissions			
Methane, kg (10 ⁶)	61.8	26.8	43
Nitrous oxide, kg (10 ³)	412	230	56
Carbon footprint per billion kg of milk, kg of CO2 (10 ⁹)	3.66	1.35	37
Capper et al. 2009			

BUILDING A GLOBAL AGENDA OF ACTION IN SUPPORT OF SUSTAINABLE LIVESTOCK SECTOR DEVELOPMENT

Henning.Steinfeld@fao.org

BUILDING A GLOBAL AGENDA OF ACTION IN SUPPORT OF SUSTAINABLE LIVESTOCK SECTOR DEVELOPMENT

GLOBAL AGENDA OF ACTION

- A Multi-stakeholder Platform for generation and sharing of knowledge, experiences and practices.
- Advocacy, including within existing inter-governmental and other processes.
- Stakeholder consultations and awareness raising initiated by the "Dialogue Group" FAO and the World Bank.
- First multi-stakeholder platform meeting held in Brasilia, Brazil from 17 to 20 May 201.
- Next in Thailand at end of November

THANK YOU

ILRI International Livestock Research Institute

Better lives through livestock

THE WORLD BANK