

Genetic parameters for residual energy intake and its relationships with production and other energy efficiency traits in Nordic Red dairy cattle

Liinamo, A. - E., Mäntysaari, P. and Mäntysaari, E. MTT Agrifood Research, Jokioinen, Finland

Introduction

- Feed cost is a major expense in dairy production
 - Cows' ability to convert feed energy to milk energy important from economical and environmental point of view
- Breeding programmes have focussed on improving production traits
 - Correlated responses in increased feed intake
 - Correlated responses in increased gross energy efficiency
 - Correlated responses in increased mobilisation of body energy reserves and health/fertility problems
- Differences reported in energy efficiency between dairy breeds and individuals
 - Breeding for improved efficiency without corresponding problems in cow health and fertility?

Aim of this study

- Genetic parameters for energy efficiency and its relationships with milk production, energy intake, body weight and body condition
- Specifically: Nordic Red dairy cattle

ASMO Uaria ET

Data collection

- Four feeding trials at MTT Agrifood Research Rehtijärvi experimental farm between 1998 and 2008
- 291 animals descending from 72 different sires
- ASMO Nordic Red Dairy Cattle MOET nucleus heifers in their 1st lactation
- Lactation weeks 2 30
- Traits:
 - Energy corrected milk yield (ECM)
 - Dry matter intake (DMI)
 - Live weight (LW)
 - Body condition score (BCS)
 - Energy balance (EB)
 - Gross energy efficiency (GE)
 - Residual energy intake (REI)

Statistical analyses

- Random regression models
- Fixed effects:
 - Calving year-month
 - Calving age
- Random regression: *pe* and *a* modelled with 2nd degree Legendre polynomials
- REML using VCE6 (Groeneveld 2008)

Energy efficiency traits

- Energy balance (P + G)
 - Energy intake (need for maintenance + need for milk)
 - Requirements from official Finnish dairy feed tables
 - MJ ME/d
- Gross energy efficiency (P)
 - Milk energy output/energy intake
 - Calculated from data
 - Kg ECM / MJ ME
- Residual energy intake (P + G)
 - Energy intake (need for maintenance + milk + BW gain or loss)
 - Requirements estimated from data, REI = cow-wise mean of prediction equation residuals
 - MJ ME/d

Phenotypic correlations

	ECM	DMI	BW	BW change	BCS	BCS change
GE ¹	0,41	-0,70	-0,16	-0,38	-0,14	-0,15
REI ²	0,0	0,86	0,0	0,0	-0,04	0,03

¹ Higher value higher efficiency ² Lower value higher efficiency

Phenotypic data: average energy efficiency in herd

Phenotypic data: energy efficiency of MTT 25% most and least efficient animals

Heritability of energy efficiency

Genetic correlations of REI measured in Iw 2 within lactation

Heritability of production, intake and body weight and condition

Genetic correlations between REI and other traits

- Energy balance and dry matter intake:
 - Genetic correlations with REI high and positive
- Body weight and body condition score:
 - Genetic correlations with REI moderate and positive
- Energy corrected milk yield:

Lactation week

Conclusions

- Phenotypic (and genetic?) variation exists in REI
- On phenotypic level REI is uncorrelated with ECM, BW and BCS
 - Better trait for selection than GE and EB which are positively correlated with cow size?
- On genetic level REI is correlated with BW, BCS, DMI and EB
 - Genetic variation observed in REI is partly due to these other traits?
 - Favouring cows with low REI would lead to smaller cows with smaller intake and more negative EB
- Relationship of REI with milk production changes over lactation
 - When to select?

Thank you for your attention!