Breeding for resource efficiency in grazing animals on resource-poor rangelands

Wendy Rauw

Introduction

Extensive production systems: animals (seasonally) graze on the rangelands = reduced production costs because animals do not need to be fed

 But: droughts and winter
 = recurrent periods of under nutrition in which large amounts of body tissue may be catabolized

Variation in grazing ability:

 \rightarrow selection may offer the opportunity to breed for a better adaptation to poor quality rangelands

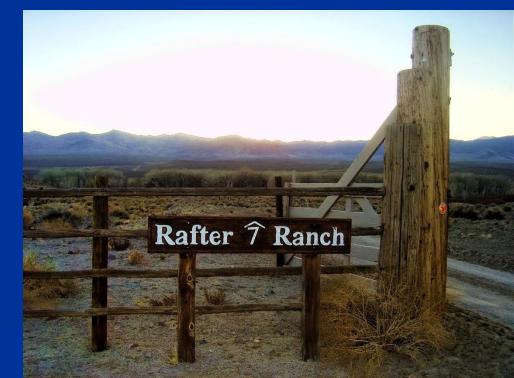
= healthier animals and improved production

Introduction

How to estimate grazing intake?

- → Grazing behavior
- → Fecal markers

These are time consuming methods!


Alternative: animals that are not efficient loose body weight, but those that are will gain (or loose less)
 → Grazing ability is indirectly inferred from changes in body weight during the grazing period

Materials and methods

Rafter 7 Merino flock:

- 5/8 Merino x 3/8 Rambouillet = 450 animals
- 7/8 Merino x 1/8 Rambouillet = 160 animals
- Fullblood Merino = 295 animals
- From 50 sires
- Between 2 to 7 years of age
- 76 to 119 days in gestation at the end of the grazing period

Materials and methods

Current/Previous number of lambs:

- None = 188 animals
- None = 82
- Single = 48
- Twin = 56
- Single = 469 animals
- None = 172
- Single = 191
- Twin = 103
- Twin = 248 animals
- None = 55
- Single = 81
- Twin = 108

Materials and methods

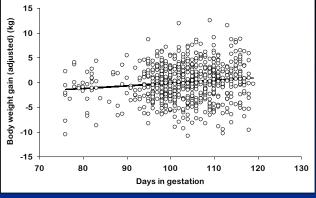
Body weight measurements before grazing = January 2nd And after = March 18th = Grazing period of 75 days $\rightarrow \Delta$ BW and Δ BW%

Wool samples are collected on the same days and ewes are shorn March 22nd and 23rd
 → Fiber diameter, staple length, greasy fleece weight

Statistics

Body weight change:

ΔBW(%)_{ijklmno} = μ + Line_i + NrLambsCurrent_j + NrLambsPrevious_k + Age_l + Sire(Line)_{mi} + DaysGestation_n + e_{ijklmno}


∆BW adjusted ∆BW% adjusted

= \triangle BW – (0.05979 × DaysGestation), and = \triangle BW% – (0.1104 × DaysGestation)

= adjusted to 0 days in gestation

Then:

ΔBW(%)_{ijklmn} = μ + Line_i + NrLambsCurrent_j + NrLambsPrevious_k + Age_l + Sire(Line)_{mi} + e_{ijklmn},

Statistics

Wool samples:

WoolTraits_{ijklm} = µ + Line_i + NrLambsPrevious_j + Age_k + Sire(Line)_{li} + e_{ijklm},

ie, without NrLambsCurrent (not significant)

Greasy fleece weight:

GFW_{ijklmn} = μ + Line_i + BWstart_j + NrLambsPrevious_k + Age_l + Sire(Line)_{mi} + e_{ijklmn}

ie, fleece weights are adjusted for body size

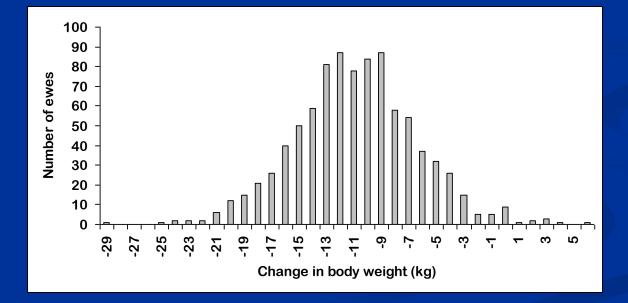
Statistics

To test whether change in body weight of the mother influences offspring weaning weights:

 $Y_{ijklmnop} = \mu + Line_i + Sex_j + BRType_k + AgeDam_l + WnAge_m + Dam_n$ $+ \Delta BW_o + e_{ijklmnop}$

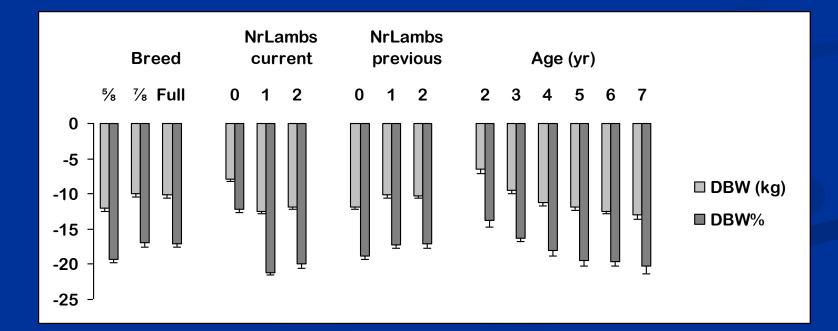
(After Rauw et al., 2007)

Heritabilities (multi-trait animal model):


△BW_{ijklm} = Line_i + NrLambsCurrent_j + NrLambsPrevious_k +Age_l + ajjklm + eijklm

GFW_{ijklm} = Line_i + BWstart_j + NrLambsPrevious_k + Age_i + a_{ijklm} + e_{ijklm},

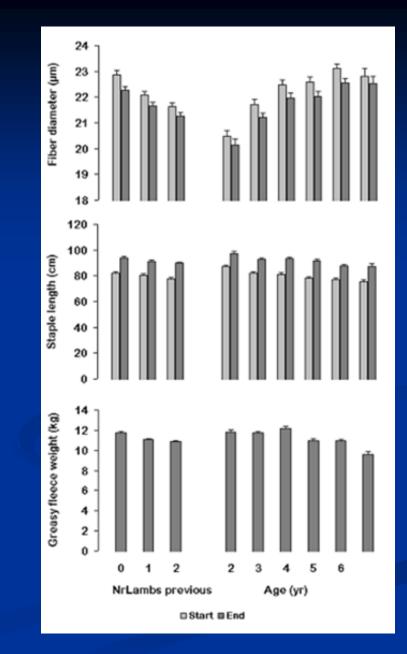
Results


Body weight decreased from 63.1 kg to 56.7 kg \rightarrow 93.6% lost body weight

 \triangle BW is a normally distributed trait (all animals included):

Results - ABW

- Pregnant ewes lost more BW than non-pregnant ewes
- Ewes with 0 NrLambs in the previous lactation lost more BW than ewes with 1 or 2 lambs previously
- Ewes lost more body weight with age, but this was not significant between 4 to 7 years of age
- Effect of sire was significant for $\triangle BW$ and $\triangle BW\%$



Results – Wool traits

- Grazing \rightarrow longer staple \rightarrow smaller diameter
- More lambs in previous lactation

 → shorter staple
 → smaller diameter
 → less wool
- Increased with age

 → shorter staple
 → larger diameter ("FD blowout")
 → less wool (adj for size!)
- Sire significant for all traits

Results – Phenotypic correlations

Heavier fleeces = larger diameter, longer staples

Animals with smaller fiber diameters at the start lost less body weight during the grazing period (r = - 0.07, P < 0.05) = very low but significant correlation

Logistic procedure: Animals with smaller fibers at the start had a higher probability to carry a lamb (or two) to term (P < 0.05)

Body weight lost during the grazing period did not significantly influence offspring weaning weights

Results – Heritabilities and genetic correlations

ΔBW 0.29 (
ΔD W 0.29 (0.05) -0.23 (0	0.10) 0.17 (0.07)	-0.21 (0.08)
FD _{start}	0.51 (0	0.05) 0.37 (0.06)	0.21 (0.05)
SL _{start}		0.39 (0.04)	0.34 (0.09)
GFW			0.36 (0.05)

Wool traits are moderately to highly heritable

∆BW was moderately heritable

Animals with smaller fiber diameters at the start lost less body weight during the grazing period (r = -0.23, P < 0.05)

Grazing during the winter conditions in the Nevada desert resulted in body weight loss → Pregnant animals in particular need to gain weight!

Ewes further into gestation lost less body weight \rightarrow Fetus is growing and puts on overall maternal body weight

Pregnant ewes lost more body weight when adjusted to 0 days in gestation than non-pregnant ewes

 \rightarrow Pregnancy was at the expense of maternal body reserves

Animals that had given birth the year before lost less body weight → Ewes that had dealt with the challenge of supporting pregnancy in a resource-poor environment before were better adapted to deal with the same situation again

Reduced fiber diameter \rightarrow Periods of undernutrition

Literature: wool growth and fiber diameter are usually depressed during reproduction = partially due to competition between tissues for essential nutrients

Present study: no significant effect of current number of offspring But: most metabolically stressful is last trimester of pregnancy and lactation

Fiber diameter and staple length decreased with number of lambs in the *previous* reproductive cycle \rightarrow this includes the previous lactation = resource trade-off wool/reproduction

In our study: no effect of body weight change on weaning weight

- → Ewes spent the last several weeks of gestation and their lactation period on pasture feeding after returning from the rangeland
- → Birth weight should be recorded

Ewes with finer wool at the start of the grazing period lost less body weight during the grazing period and had a greater probability to carry a lamb to term

Correlation was weak but significant \rightarrow more research needed

- → Finer wool = greater thermal insulation
- Animals with finer wool were better adapted to Nevada's cold desert climate

Change in body weight is moderately heritable → Selection for body weight change will result in a positive selection response

Fiber diameter was highly heritable + animals with finer fibers lost both phenotypically and genetically less body weight during the grazing period

 \rightarrow Selection for fiber diameter may result in animals that are better adapted to the cold desert climate as a correlated effect

Selection for greater adaptability = selecting animals that can produce wool at acceptable levels while their health and welfare is not being compromised Under intensive conditions, residual feed intake is estimated as:

```
FI_i = b_0 + (b_1 \times BW_i^{0.75}) + (b_2 \times BWG_i) + (b_3 \times PROD_i) + e_i
```

Feed Intake Metabolic BW (Maintenance) Body Weight Gain (Growth) Production (eggs, milk, wool, pregnancy)

 b_0 , b_1 , b_2 , b_3 = intercept & partial regression coefficients

e_i = error term = Residual Feed Intake (RFI)

Extensive grazing: $BW \rightarrow BW^{0.75}$ & BWG

Not FI, nor efficiencies for maintenance and growth

However, rewriting the model gives:

 $FI_i = b_0 + (b_1 \times BW_i^{0.75}) + (b_2 \times BWG_i) + (b_3 \times PROD_i) + e_i$ $GE_i = FI_i - b_0 - e_i = (b_1 \times BW_i^{0.75}) + (b_2 \times BWG_i) + (b_3 \times PROD_i)$

 b_1 , b_2 , b_3 = need to be estimated from a controlled experiment

GE = estimate of individual ability to graze at resource limiting rangelands

GE can be included in selection index with a higher value being more beneficial

Increased adaptation rangeland environments, comparison of different species, estimating the grazing load of rangelands

Rauw.Wendy@inia.es

