Genetic selection for lower predicted methane emissions in dairy cattle

Yvette de Haas Jack Windig, Mario Calus, André Bannink, Michel de Haan, Jan Dijkstra, Roel Veerkamp

LIVESTOCK RESEARCH

Animal Breeding & Genomics Centre

Introduction

 Mitigation of enteric methane (CH₄) emission in ruminants is an important area of research

- Nutrition
- Microbes
- Genetic variation
 New!
- Breeding
 - Direct
 - Indirect
 - Feed efficiencyPredicted methane emission
 - Fredicted methane emis

LIVESTOCK RESEARCH WAGENINGEN Animal Breeding & Genomics Centre

Aim of study

To establish whether first lactation cows differed *phenotypically, genetically and genotypically* for their individual predicted enteric CH₄ emission

Potential of genetic selection to reduce CH₄ emissions

Collected data

- Experimental farm: 613 cows
 - Feed intake (daily)
 - Ration composition (twice weekly)
 - Body weight (weekly)
 - Milk production & milk contents (weekly)

Blood samples: 588 cows

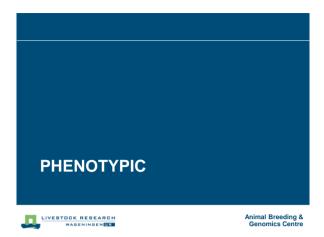
- Illumina 50k Chip
- 43,011 SNP

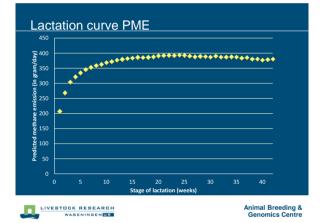
UVESTOCK RESEARCH

Animal Breeding & Genomics Centre

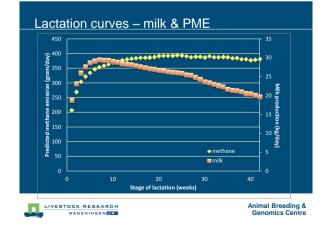
Available data

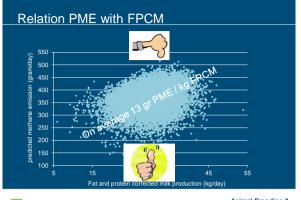
- After all editing steps:
 548 animals
 - 17,759 cow-week records
 - 225 days (100 305 days)
- Analysed traits:
 - Dry matter intake (DMI, in kg/d)
 - Residual feed intake (RFI, in MJ/d)
 - Fat and protein corrected milk (FPCM, in kg/d)
 - Predicted methane emission (PME, in gr/d)


UVESTOCK RESEARCH


Animal Breeding & Genomics Centre

Trait definition


- Predicted methane emission (in gram/day): (Intergovernmental Panel on Climate Change Tier-2 methodology (IPCC, 2000))
 - = feed intake (in kg DM/d)
 - x energy content of kg DM (= 18.4 (MJ/kg DM))
 - / energy generated by methane (= 0.05565 (MJ/g))
 - x percentage methane of gross energy (= 0.06)
 - x scaling factor [1 + (2.38 level of intake (multiples of maintenance level)) x 0.04]



LIVESTOCK RESEARCH WAGENINGEN UR Animal Breeding & Genomics Centre

Phenotypic correlations

_					
		PME	FPCM	DMI	
F	PCM	0.26			
D	DMI	0.99	0.31		
R	RFI	0.72	-0.45	0.72	
PME	= Predicted me	thane emiss	ion (a/d)		
PCM	= Fat and prote		(0)	on (ka/d)	
MI	= Dry matter inf		mint producti		
RFI	= Residual feed	,	(d)		
LIVES	TOCK RESEARCH			Anim	al

LIVESTOCK RESEARCH

Animal Breeding & Genomics Centre

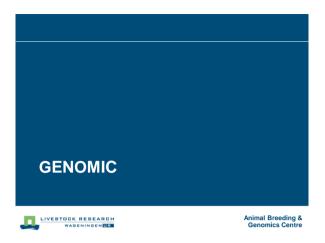
LIVESTOCK RESEARCH WAGENINGEN UR

Lactation period (weeks)	PME		
0-42	0.35		
1-5	0.29		
6-10	0.30		
11-15	0.36		
16-20	0.40		
21-25	0.42		
26-30	0.35		

Animal Breeding & Genomics Centre

Heritabilities

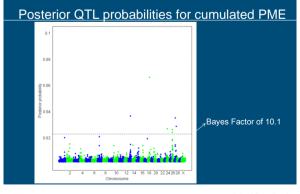
Lactation period (weeks)	PME	PME/FPCM
0-42	0.35	0.58
1-5	0.29	0.66
6-10	0.30	0.65
11-15	0.36	0.46
16-20	0.40	0.39
21-25	0.42	0.44
26-30	0.35	0.55


LIVESTOCK RESEARCH WAGENINGEN DR Animal Breeding & Genomics Centre

Genetic correlations

Lactation period (weeks)	PME - FPCM	PME - RFI
0-42	0.31	0.32
1-5	-0.66	0.84
6-10	-0.18	0.50
11-15	0.42	0.18
16-20	0.67	0.21
21-25	0.70	0.34
26-30	0.60	0.43

LIVESTOCK RESEARCH WAGENINGEN UR



Accuracies of predicting PME

	Rgg'
Polygenic	0.21
Polygenic + SNP	0.37
g = true breeding g' = predicted bro	

LIVESTOCK RESEARCH WAGENINGEN Animal Breeding & Genomics Centre

UVESTOCK RESEARCH

Possible impact on PME

- 0.22 genetic s.d. per year, i.e.
 - Classical breeding programme (progeny testing milk) Genomic selection, with low accuracy and short generation interval (Calus et al., 2011)
- Ten years: 13 to 9 gr PME /kg FPCM i.e. 30% reduction
- Realistic?
 - How much effort will be put on this trait Association with real methane emission

Animal Breeding & Genomics Centre

Take home message

Breeding for reduced predicted methane emission is possible and opens up opportunities to breed more environment-friendly cows!

LIVESTOCK RESEARCH

Animal Breeding & Genomics Centre

Acknowledgements

- Dutch Dairy Board (PZ)
- Senter Novem (currently: Agentschap NL)
- RobustMilk Grant Agreement KBBE-211708

Thank you for listening

ROBUSTMILK= Animal Breeding & Genomics Centre

