FATTY ACID PROFILE OF TYPICAL NORWEGIAN LAMBS SUSTAINED ENTIRELY ON FRESH MOUNTAIN PASTURES

D.E. Mushi^a, G. Steinheim^b, R, Johannessen^c, L.O.Eik^b

INTRODUCTION

• Studies have shown that consumers' perception on meat healthiness is related to its fat content and fatty acid composition (Fisher et al., 2000).

• Higher intakes of animal fats, especially those rich in long-chain saturated fatty acids (SFA), are associated with increased plasma cholesterol, and the risk of atherosclerosis and cardiovascular diseases (Ascherio, 2003; Mensink et al., 2003).

INTRODUCTION

- Fatty acid composition of lamb meat is influenced by both internal factors, e.g. breed, and external factors such as feeding system.
- Mountain pasture, also called herbage lipids, usually contain increased amounts of unsaturated fatty acids (average 70− 90%), particularly linoleic (18:2, n−6) and linolenic (18:3, n−3) acids (Dewhurst et al.,2003; Schroeder et al.,2004).
- Therefore, the aim of the present study was to determine the influence of high altitude mountain pastures on the fatty acid profile of meat from Norwegian lambs

MATERIALS AND METHODS

- The lambs studied were in six different flocks and grazed mountain pastures in the low-alpine zone (≈ 1000 − 1350 m.a.s.l.) and mid-alpine zone (≈ 1350 − 1600 m.a.s.l.) of southern Norway.
- Grasses, especially *Avenella flexuosa and Carex* spp, and several herbs and *Salix spp*. provide forage.
- From each flock (fig 1), 10 animals were randomly selected for fatty acid profiling.
- Mean age of lambs at slaughter was 136 d with mean carcass weight of 21 kg.

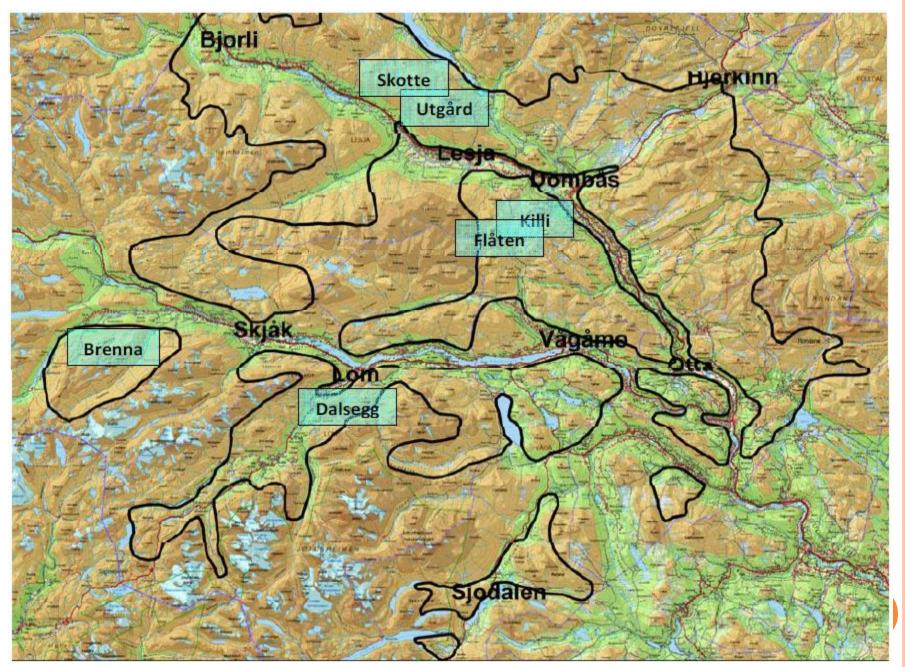


Fig.1: Location of six farms from which slaughter lambs were sourced

MATERIALS AND METHODS

- Slaughtering and grading were performed at a commercial slaughterhouse (Nortura, Gol).
- Grading of carcasses based on the EUROP grading system for lambs was done on a 15-point scale
- The carcasses were then placed separately on hooks in chilled storage at an air temperature of 0 oC for 48 h.
- Thereafter m. longissimus dorsi, was excised at the lumbar vertebrae for fatty acid analysis using GC

Table 1: Variation in the age, and carcass weight, conformation, percent fat and fatness scores of slaughter animals by farm of origin

origin			J		•	
Parameter	511Dovre	512Lesja	513Skjak	514Lom	515Vaga	Sign.
Age	138.9 ^a	141.0 ^a	131.1 ^{bc}	129.3 ^c	141.9 ^a	***
Carcass WT	21.0	21.6	20.6	21.8	19.4	ns
Conform.	7.4 ^c	10.0 ^a	9.0 ^b	9.2 ^a	9.2 ^{ab}	***
Fat.Score	6.8	5.5	6.2	5.9	6.1	ns
Fat percent	19.9	17.6	17.0	17.7	22.7	ns

Table 2: Variation of groups of fatty acids and iodine number of

slaughter animal by farm of origin						
Parameter	511Dovre	512Lesja	513Skjak	514Lom	515Vaga	Sign.
SFA	51.5 ^b	51.3 ^b	50.6 ^b	53.9 ^a	52.4 ^{ab}	*
MUFA	41.4 ^a	41.4ª	42.0 ^a	38.8 ^b	39.8 ^{ab}	*
PUFA	6.9	7.5	7.5	7.3	7.4	ns
n-3 PUFA	2.6 ^b	3.0 ^b	2.9 ^b	3.7 ^a	3.1 ^b	*
n-6 PUFA	4.1	4.2	4.4	3.5	4.2	ns
n-9 MUFA	33.6 ^{ab}	33.9 ^a	34.9 ^a	31.1 ^c	32.3 ^{bc}	**
n-6:n-3	2.1 ^a	1.4 ^b	1.6 ^{ab}	1.0 ^b	1.3 ^b	*
lodine no.	52.3	53.5	54.0	52.0	52.3	ns

Table 3: Variation of individual fatty acids in slaughter animals by farm of origin 514Lom 512Lesja 513Skjak 511Dovre 515Vaga Sign. Parameter 23.0 C16:0 22.1 22.7 22.5 22.2 ns

1.8a

1.4^{bc}

18.2^c

34.6^a

3.9

1.2^b

0.3

0.3

0.3

1.7^a

1.5^{ab}

20.4ab

33.7^a

3.6

1.4a

0.3

0.3

0.3

C16:1 n7

C17:0

C18:0

C18:1 n9

C18:2 n6

C18:3n3

C20:4n6

C20:5n3

C22:5n3

1.7^a

1.3^c

19.4^{bc}

33.3^{ab}

3.5

 0.9^{c}

0.3

0.3

0.3

1.5^{bc}

1.4^b

22.0^a

31.0^c

3.0

1.6a

0.3

0.3

0.3

*

**

*

*

ns

ns

ns

ns

 1.5^{c}

1.7^a

21.5^a

32.0^{bc}

3.6

1.5^a

0.3

0.3

0.3

Table 4: Variation in the age, and carcass weight, conformation, fatness

scores and percent fat of slaughter animals by sex					
Parameter	Female	male	SE	Sign.	
Age	138.3	134.6	1.4	ns	
Ca <u>rcass</u> WT	20.3	21.5	0.4	*	
Conformation	8.8	9.1	0.2	ns	
Fatness Score	6.4	5.7	0.2	*	
Eat parcent	20.2	170	1 1	nc ll	

Ca <u>rcass WT</u>	20.3	21.5	0.4	*
Conformation	8.8	9.1	0.2	ns
Fatness Score	6.4	5.7	0.2	*
Fat percent	20.2	17.8	1.1	ns

Table 5: Variation in groups of fatty acids and iodine number by sex of slaughter animals

Parameter	Female	male	SE	Sign.
SFA	52.5	51.4	0.5	ns
MUFA	40.8	40.6	0.5	ns
PUF <u>A</u>	6.8	7.8	0.3	*
n-3 PUFA	3.1	3.1	0.1	ns
n-6 PUFA	3.6	4.6	0.3	*
n-9 MUFA	33.1	33.2	0.5	ns
n-6:n-3	1.4	1.6	1.7	ns
lodine no.	52.0	53.8	0.6	ns

Table 3: Variation of individual fatty acids in slaughter animals by sex

Acid	Female	male	SE	Sign.
C16:0	23.1	21.9	0.3	**
C17:0	1.4	1.5	0.0	ns
C17:1	0.7	0.8	0.0	**
C18:0	20.0	20.6	0.3	ns
C18:1 n9	33.0	32.9	0.5	ns
C18:2 n6	3.1	3.9	0.2	*
C18:3n3	1.3	1.3	0.1	ns
C20:4n6	0.3	0.3	0.0	ns
C20:5n3	0.3	0.3	0.0	ns
C22:5n3	0.3	0.3	0.0	ns
C24.1	0.2	0.2	0.0	12 C

CONCLUSION

- Meat from lambs grazed on Norwegian mountain pastures has salubrious fatty acid profile based on the following:
 - higher level of unsaturation as indicated by high Iodine number
 - Favourable n-6:n-3 ratio (below 4),
 - Higher proportion of MUFA (> 38%)
 - SFA being mainly due to stearic acid, which has no cholesteromic activity
- This information can be used to promote consumption of lambs finished on mountain pastures.