Inbreeding effective population size in composite beef cattle breeds

R. J. C. Cantet

Department of Animal Production
University of Buenos Aires - CONICET,

Complex mating structure that can be accurately characterized by demographic parameters.

Objective

To obtain expressions for the inbreeding N_{e} that depends on demographic parameters. These can be accurately estimated from a data base.

Equations

1. Average F_{t} in the nucleus herds.

Average coancestry between two individuals from:
2. a nucleus herd.
3. different nucleus herds
4. nucleus (one) and the multiplier $\left(\theta_{N M}\right)$.

5. multipliers herds.

Conditional on S_{N} being the sire of S_{M} we obtain

$$
P\left(S_{N} \equiv S_{M} \mid S_{N} \rightarrow S_{M}\right)=\frac{1}{4}\left(1+F_{t-1}\right)
$$

If it is not the sire, then the probability is the relationship in $t-1$:

$$
P\left(S_{N} \equiv S_{M} \mid S_{N} \notin S_{M}\right)=\theta_{N M(t-1)}
$$

Then, the probability of genes from the two sires being IBD is

$$
P\left(S_{N} \equiv S_{M}\right)=\frac{1}{4}\left(1+F_{t-1}\right) P_{N}+\theta_{N M(t-1)}\left(1-P_{N}\right)
$$

Equation for $\theta_{N M}$

$\theta_{N M(t)}=\frac{1}{4}\left[P\left(S_{N} \equiv S_{M}\right)+P\left(S_{N} \equiv D_{M}\right)+P\left(D_{N} \equiv S_{M}\right)+P\left(D_{N} \equiv D_{M}\right)\right]$
Expand, for example, the probability for IBD between sires
$P\left(S_{N} \equiv S_{M}\right)=P\left(S_{N} \equiv S_{M} \mid S_{N} \rightarrow S_{M}\right) P_{N}+P\left(S_{N} \equiv S_{M} \mid S_{N} \notin S_{M}\right)\left(1-P_{N}\right)$
$P_{N}=$ probability that a bull from a multiplied herd is a son of a bull from the nucleus.

Using a similar reasoning the probability of genes from D_{N} being IBD to the genes in S_{M} we get

$$
P\left(D_{N} \equiv S_{M}\right)=\frac{1}{8}\left(1+F_{t-1}\right) P_{H E}+\theta_{N M(t-1)}\left(1-P_{N}\right)
$$

$P_{H E}=$ probability that a cow from a multiplied herd is a paternal half sib of a bull from the nucleus.

On collecting all probabilities, we obtain

$$
\theta_{N M(t)}=\frac{3}{16}\left(1+F_{t-1}\right) P_{N}+\theta_{N M(t-1)}\left(1-P_{N}\right)
$$

