Genetic and Environmental Info in goat milk FTIR spectra

B. Dagnachew and T. Adnøy

Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences

Outline

- Background
 - Milk composition
 - Infrared (IR) spectroscopy
 - Objectives
- Methods
- Results
- Conclusion

Background

 Milk is a complex mixture of several thousand kinds of bio-molecules

- In the current animal breeding programs, only few major milk components are included
- Fat %, protein %, lactose %, SCC, FFA, etc
- Infrared (IR) spectrometry is used
 - Rapid method (chemical analysis are time and labor intensive)

Infrared (IR) spectra

- Fourier Transform Infrared (FTIR)
 - Improve signal to noise ratio
 - Multiplexing capabilities
 - Higher energy throughput

GOAL

- Genetic variability of cow milk based on MIR spectra (Soyeurt et al., 2010)
- Genetic variability of goat milk FTIR spectra have not been studied
 - Some regions are indirectly known

Objective:

Direct estimation of genetic and environmental variability of goat milk FTIR spectra

Materials and Methods

Raw FTIR Spectra data

- TINE (Norwegian dairies) has four D-labs performing routine FTIR analysis on milk samples
- Raw FTIR spectra are stored since 2007 in a database

• For this study:

- Two years (2007 and 2008)
- Total of 73,858 observations
 - 28,269 goats
 - 271 farms

CombiFoss[™] FT

Cont...

Selection of FTIR spectra

- O-H bending region (between 1600cm⁻¹ and 1700 cm⁻¹)
- O-H stretching region (between 3025 cm⁻¹ and 3500 cm⁻¹)

Low signal to noise ratio

536 removed524 selected

Cont ...

- Limitations ...
 - Simultaneous genetic analysis of selected spectra data points is not possible with the current methods available for genetic analysis

e.g. DMU 31, WOMBAT 42, ASReml 21 traits, ...

- Two step analysis performed
 - Dimension (trait) reduction
 - Principal component analysis (PCA)
 - Genetic analysis
 - Mixed model

Cont ...

Principal component analysis (PCA)

Goal: to extract a set of fewer components that explain as much variation as possible of the original variation

$$Y = TP' + F$$

- Y are the FTIR spectral data
- T is score matrix
- P is loading matrix
- F is error term
- PROC PRINCOMP in SAS (SAS Institute, 1994)
 - On correlation matrix of Y
 - Scores, T, are considered as new traits → PC traits

Pre-correction

- PC traits T corrected for:
 - farm region (12 levels)
 - kidding season (3 levels)
 - lactation stage (4 co-variables)
 - age at kidding (5 levels)
 - lactation number (3 levels)

Methods Cont...

Model

Multi-trait linear mixed model on pre-corrected PC traits

$$t_c = Xb + Za + Qp + Wh + e$$

- **t**_c is the vector of pre-corrected PC traits
- **b** is the vector of fixed effect (HTY and HTM)
- **a** is the vector of additive genetic effect
- **p** is the vector of permanent environment effect
- **h** is the vector of random herd-test-day (HTDr) effect
- **e** is the vector of random residual effect
- X, Z, Q, and W are the corresponding design matrices

AI-REML of WOMBAT (Meyer, 2007)

Results and Discussion

PCA

- Resulted in 8 PCs which explain ~99% of the total spectral variation
- The dramatic reduction of the number of components suggests there is high correlation among spectral variables

Table 1: Variance ratios for genetic, permanent environment, HTDr and residual random effects

PCs	Relative	e Geneti	c Permanent	t Herd test-da	y
	eigenvalu	es (heritabil	ity) environmer	nt (HTDr)	Residual
1	58.96	0.154	0.020	0.105	0.721
2	25.62	0.264	0.091	0.298	0.347
3	7.74	0.146	0.015	0.388	0.451
4	3.24	0.057	0.270	0.020	0.653
5	1.66	0.011	0.013	0.941	0.035
6	1.07	0.229	0.135	0.277	0.359
700	0.41	0.211	0.058	0.298	0.432
8	0.28	0.285	0.033	0.140	0.542

Cont ...

Average spectral heritabilities

Traits	Estimated heritability (2009)	Spectral heritability (range)
Lactose	0.38	0.25 (0.054 – 0.38)
Fat	0.30	0.22 (0.041 – 0.385)
Protein	0.35	0.25 (0.017 - 0.39) 1740 - 1800 cm ⁻¹ (Fat A
Contents are predicte	ed from FTIR spectra	1240 1260 cm-1 (amida III)
	Sa nomi in coposia	1240 – 1260 cm ⁻¹ (amide III) 1520 – 1560 cm ⁻¹ (amide II)

Conclusion

- There is a substantial amount of genetic variation in goat milk FTIR spectra
 - Not all FTIR regions are of breeding interest
 - But could be used in herd management

Thank you for your attention!

