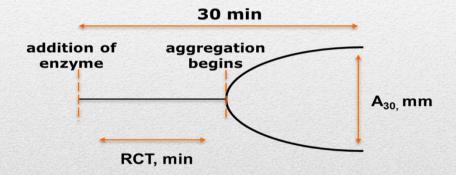


Denis Pretto¹, Nicolas López-Villalobos² and Martino Cassandro¹

- ¹ Department of Animal Science, University of Padova (Italy)
- ² Institute of Veterinary, Animal and Biomedical Sciences, Massey University (Palmerston North, New Zealand)



☐ Session 18, no 7

Genetic response of milk coaugulation properties in Italian Holstein Friesian dairy cattle population using different sets of genetic parameters

□ Introduction

- ☐ Milk Coagulation Properties:
 - ✓ shorter Rennet Coagulation Time (RCT, min) and
 - ✓ stronger curd firmness (A₃₀, mm) can improve cheese-making efficiency (Aleandri et al., 1989; Wedholm et al., 2006)

- ☐ Important in those countries where a wide proportion of milk is processed into cheese [Italy ~ 70 %]
- □ Nowadays these traits can be measured routinely in cheap way by mid-infrared spectroscopy (De Marchi et al., 2009)

☐ Introduction

- ☐ Up to now MCP traits are not recorded routinarialy
- ☐ Selection indexes for dairy cattle populations don't consider MCP traits
- ☐ Deterioration of MCP during the years ??
 - √ few historical data are available
 - ✓ genetic correlation estimated between MCP traits and traits in selection index are contradictory

Example. $r_{a: milk \ yield, \ RCT}$ = -0.24 (Cassandro et al., 2008) -0.07 (Vallas et al., 2010)

+0.12 (Ikonen et al., 2004)

☐ Aims

✓ Analyze genetic response of milk coagulation properties under current selection index in Italian Holstein Friesian dairy cattle population using different sets of genetic parameters.

■ M&M: Selection index theory

P b=G a

Where:

- **P** = phenotipic (co)variance matrix of traits in the selection criterion
- **G** = genetic (co)variance matrix between traits in the selection objective (selection Index) and the traits in the selection criterion
- b= vector of selection criterion coefficients
- a= vector of economic value coefficients

$$CR_j = i_j * \frac{b'G_j}{\sqrt{b'Pb}}$$

CR_j = correlated response per generation in trait Y_j i = selection intensity

Genetic response has been expressed as CR after 10 years of selection for all traits considered

■ M&M: Selection index theory

P b=G a

Where:

- P = phenotipic (co)variance matrix of traits in the selection criterion
- G = genetic (co)variance matrix between traits in the selection objective (selection Index) and the traits in the selection criterion
- b= vector of selection criterion coefficients
- a= vector of economic value coefficients

$$CR_j = i_l * \frac{b'G_j}{\sqrt{b'Pb}}$$

 CR_j = correlated response per generation in trait Y_j i = selection intensity

Genetic response has been expressed as CR after 10 years of selection for all traits considered

☐ M&M: Italian Holstein Friesian Sel. index

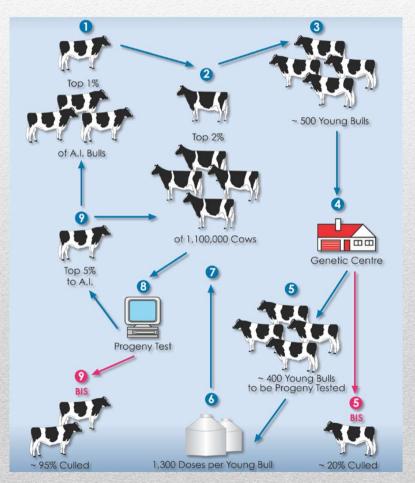
Trait	Relative weight	Economic value
Fat yield	8 %	4
Protein yield	36 %	22.4
Fat, %	2 %	108.7
Protein, %	3 %	350.0
SCS	-10 %	-143.9
Udder index	13 %	174.1
Feet and legs	6 %	75.9
Туре	4 %	50.5
Longevity	8 %	115.1
Fertility	10 %	132.4

☐ M&M: Italian Holstein Friesian Sel. index

Trait	Relative weight	Economic value
Fat yield	8 %	4
Protein yield	36 %	22.4
Fat,%	2 %	108.7
Protein, %	3 %	350.0
SCS	-10 %	-143.9
Udder index	13 %	17 4 .1
Feet and legs	6 %	75.9
Туре	4 %	50.5
Longevity	8 %	115.1
Fertility	10 %	132.4

Traits related with milk yield and quality = 59 % of total index

☐ M&M: Italian Holstein Friesian Sel. index


Trait	Relative weight	Economic value
Fat yield	8 %	4
Protein yield	36 %	22.4
Fat, %	2 %	108.7
Protein, %	3 %	350.0
SCS	-10 %	-143.9
Milk yield	-	0
RCT, min	-	0
A ₃₀ , mm	-	0
рН	-	0
Titratable acidity	-	0

Traits related with milk yield and quality = 59 % of total index

Traits not in selection index but in the calculation for correlated response

☐ M&M: Breeding scheme

- √ Four pathways of selection were considered
- ✓ Selection intensities (i) and generation intervals (GI) were in according with current selection scheme.

Pathway	progeny, n	i	GI, yr	Lactation with records
CC ¹		0.05	4	I
CB ^I		2.42	5	2
BC ² BB ²	100	2.06	6	I
BB^2	100	2.66	8	I

Own performance

² performance per each daughter in progeny testing

☐ M&M: Genetic parameters

Traits

in sel.

index

Trait	$\sigma_{_{a}}$	h²	r
Milk Yield, kg/305d	875.40 ¹	0.311	0.48 ⁴
Fat Yield, kg/305d	33.74	0.29 ¹	0.40 ⁴
Protein Yield, kg/305d	27.14 ¹	0.301	0.46 ⁴
Fat %	0.311	0.39 ²	0.574
Protein %	0.141	0.30 ²	0.554
SCS	1.171	0.21	0.274
RCT	2.22 ² -0.94 ³	0.25 ² -0.28 ³	0.45 ³
A ₃₀	4.06 ²	0.15 ²	0.50 ³
рН	0.05 ²	0.212	0.363
Titratable acidity	0.15 ²	0.172	0.36

¹ Interbull, 2011; ² Cassandro et al., 2008; ³Vallas et al., 2010; ⁴ Welper and Freeman, 1992

■ M&M: Correlation set

✓ Phenotipic (below diag) and genetic (up diag) correlation were assumed from different sources and validated for positive definite matrix (method Jorjani et al., 2003).

Trait	MY	FY	PY	F%	P%	SCS
MY, kg/305d	-	0.49	0.83	-0.50	-0.43	0.22
FY, kg/305d	0.74	=	0.66	0.51	0.20	0.07
PY, kg/305d	0.92	0.81	-	-0.16	0.15	0.22
F%	-0.33	0.37	-0.12	-	0.63	-0.16
P%	-0.31	0.08	0.10	0.54	-	-0.10
SCS, point	-0.08	-0.09	-0.05	-0.02	0.07	-

☐ M&M: Correlation set

✓ Genetic response was estimated assumed three different sets of genetic correlation parameters for MCP traits →A: Cassandro et al., 2008

Trait	RCT	a30	рН	TA
MY, kg/305d	-0.24	0.22	-0.19	0.19
FY, kg/305d	0.00	0.00	0.00	0.00
PY, kg/305d	0.00	0.00	0.00	0.00
F%	-0.05	0.14	-0.16	0.49
P%	-0.08	0.44	-0.24	0.58
SCS	0.25	-0.40	0.44	-0.08
RCT	-	-0.89	0.81	-0.50
A ₃₀		-	-0.85	0.66
pΗ			-	-0.68
Titratable Acidity				-

Cassandro et al., 2008 Unknown, set 0.00

■ M&M: Correlation set

✓ Genetic response was estimated assumed three different sets of genetic correlation parameters for MCP traits → B: Ikonen et al., 2004

Trait	RCT	a30	рН	TA
MY, kg/305d	0.12	-0.07	-0.19	0.19
FY, kg/305d	0.00	0.00	0.00	0.00
PY, kg/305d	0.00	0.00	0.00	0.00
F%	0.08	0.02	-0.16	0.49
P%	0.22	-0.07	-0.24	0.58
SCS	0.29	-0.33	0.44	-0.08
RCT	_	-0.93	0.81	-0.50
A ₃₀		-	-0.85	0.66
pΗ			-	-0.68
Titratable Acidity				-

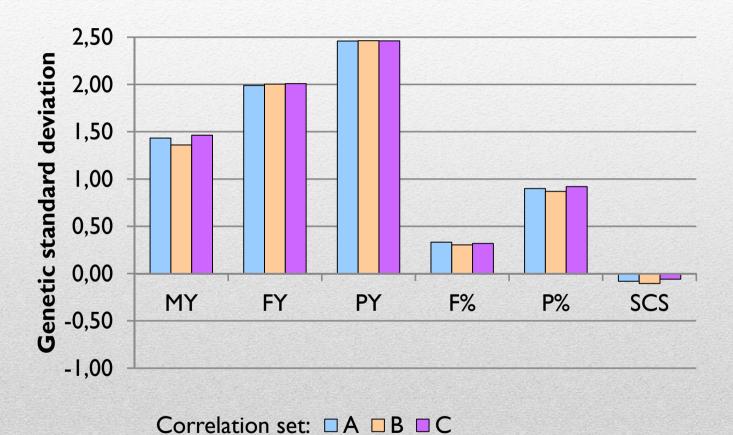
Ikonen et al., 2004
Cassandro et al., 2008
Unknown, set 0.00

☐ M&M: Correlation set

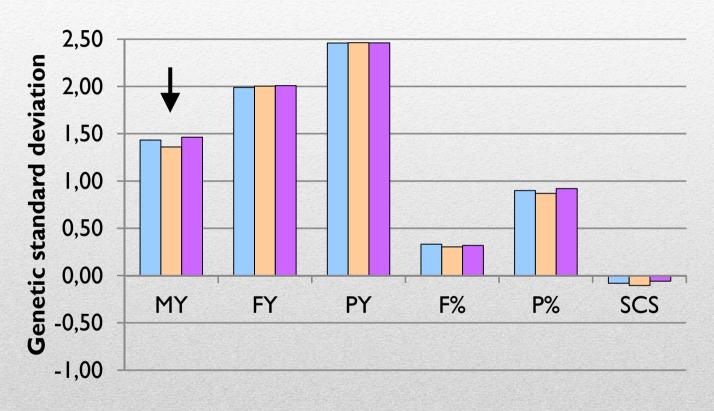
✓ Genetic response was estimated assumed three different sets of genetic correlation parameters for MCP traits → C:Vallas et al., 2010

Trait	RCT	a30	рН	TA
MY, kg/305d	-0.07	-0.29	-0.19	0.19
FY, kg/305d	0.00	0.00	0.00	0.00
PY, kg/305d	0.00	0.00	0.00	0.00
F%	-0.10	0.25	-0.16	0.49
P%	0.19	0.48	-0.24	0.58
SCS	0.06	-0.04	0.44	-0.08
RCT	_	-0.16	0.81	-0.50
A ₃₀		-	-0.85	0.66
pΗ			-	-0.68
Titratable Acidity				-

Vallas et el., 2010 Cassandro et al., 2008 Unknown, set 0.00


✓ Correlated response for each trait after 10 years of selection

		correlation set						
	Trait	Α	В	С				
	MY, kg/305d	1254.8	1190.6	1281.3				
	FY, kg/305d	67.I	67.6	67.7				
raits sel.	PY, kg/305d	66.7	66.8	66.8				
idex	F%	0.10	0.09	0.10				
	P%	0.13	0.13	0.13				
L	SCS, point	-0.10	-0.12	-0.07				
	RCT, min	-0.15	-0.06	0.11				
	A ₃₀ , mm	1.53	0.48	0.59				
	рН	-0.01	-0.02	-0.02				
	Titratable Acidity	0.04	0.05	0.04				


✓ Correlated response for each trait after 10 years of selection

		correlation set				
	Trait	Α	В	С		
	MY, kg/305d	1254.8	1190.6	1281.3		
_	FY, kg/305d	67.1	67.6	67.7		
Traits in sel.	PY, kg/305d	66.7	66.8	66.8		
index	F%	0.10	0.09	0.10		
	P%	0.13	0.13	0.13		
	SCS, point	-0.10	-0.12	-0.07		
	RCT, min	-0.15	-0.06	0.11		
	A ₃₀ , mm	1.53	0.48	0.59		
	рН	-0.01	-0.02	-0.02		
	Titratable Acidity	0.04	0.05	0.04		

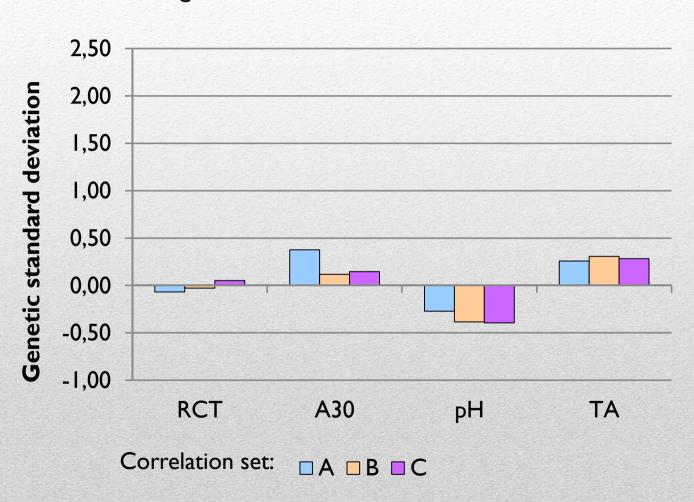
✓ Correlated response for traits in selection index after 10 years of selection in genetic standard deviation

✓ Correlated response for traits in selection index after 10 years of selection in genetic standard deviation

Correlation set:

A

B


C

✓ Correlated response for traits in selection index after 10 years of selection in genetic standard deviation

Correlation set: □A □B □C

✓ Correlated response for MCP traits and milk acidity after 10 year of selection in genetic standard deviation

□ Conclusions

- ✓ Current selection index gives more pressure to yield than milk quality
- ✓ It seems not to deteriorate MCP traits
- ✓ The trend could be different depending on correlation set considered
- ✓ In this calculation has been taken into account only a part of traits in selection index
- ✓ For improve significantly these traits should need a routinely phenotipic recording and insert them in selection index

□ Conclusions

- ✓ Current selection index gives more pressure to yield than milk quality
- ✓ It seems not to deteriorate MCP traits
- ✓ The trend could be different depending on correlation set considered
- ✓ In this calculation has been taken into account only a part of traits in selection index
- √ For improve significantly these traits should need a routinely phenotipic recording and insert them in selection index

Thanks you for your attention!

