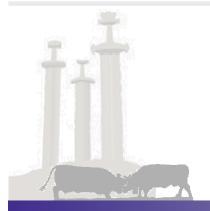

jil

University of Padova

Genetic assessment of fighting ability in Valdostana cattle breeds

Cristina Sartori and Roberto Mantovani

Department of Animal Science, University of Padua cristina.sartori@unipd.it



Fighting Ability

- √ Capability to win a contest (Parker, 1974)
- ✓ In cows: rigid dominance relations quickly established at grazing when unfamiliar individuals meet (Beilharz & Zeeb, 1982)

Aosta Chestnut & Aosta Black Pied cattle (Valdostana breed)

- ✓ Autochthonous of West Alps
- ✓ Dual Purpose
- Population (2010): Chestnut n=22,857; Black Pied n=1394
- ✓ Strong attitude to fight: "Batailles de Reines"

"Batailles de Reines"

- ✓ Each year: 20 Eliminatories + Final battle
- √ 3 Tournaments per day, defined by weight
- √ Knock-out battles among couples

Heréns breed Valais, CH / Haute Savoie, FR. Aosta Black Pied & Aosta Chestnut, Aosta, IT

Steps of the study

To sum up the studies carried on fighting ability in Aosta Chestnut and Aosta Black Pied cattle, in terms of:

- 1. Behavioural evaluation of agonistic performances
- 2. Genetic assessment of fighting ability
- 3. Incidence of inbreeding on the trait

General aim => to build up genetic indexes suitable for breeding

To sum up the studies carried on fighting ability in Aosta Chestnut and Aosta Black Pied cattle, in terms of:

- 1. Behavioural evaluation of agonistic performances
- 2. Genetic assessment of fighting ability
- 3. Incidence of inbreeding on the trait
- General aim => to build up genetic indexes suitable for breeding

(Sartori, Manser and Mantovani, in prep.)

- ✓ Video recording of 4 tournaments performed in 2009 (n = 188 fights)
- ✓ Quantification of the main behaviours expressed during cow fights (JWatcher™ software)
- Ethogram for cattle escalated conflict

(Sartori, Manser and Mantovani, in prep.)

Statistical analyses

- > Evaluation of dynamics of conflicts, in terms of:
 - duration
 - agonistic intensity
 - ratio of different behaviours* on total battle
 *non agonistic behaviours; exhibitions; physical fights
- Mixed linear model for repeated measurements (SAS, 2004)

Results

Friendly

Passive

Defence of resource

Visual display

Vocalization

Looking in eyes

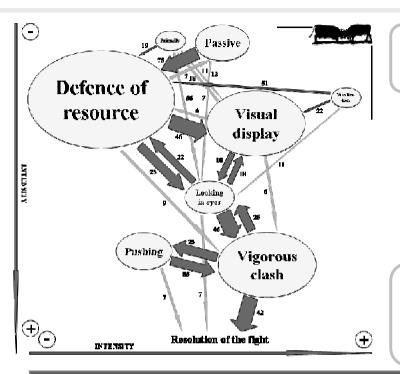
Pushing

Vigorous clash

1, 2, ...6 = score of intensity

NA = Non agonistic behaviour; E = exhibition; PF = Physical fight

Defence of resource



Transition diagram of behaviours obtained from ethograms (JWatcher™, Blumstein & Daniel, 2007)

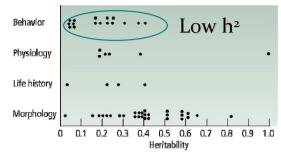
Least squares means and standard errors of diff. number of fights disputed in the tournament (MIXED Procedure, SAS 2004, Bonferroni adjustment method)

Variable	Match disputed				
Variable	1 st	3 rd	5 th		
Duration of match (sec.)	210.1 (28.6)	269.5 (27.9)	242.1 (40.5)		
Intensity of match (score)	3.34 (0.11) ^A	3.79 (0.11) ^B	4.04 (0.15) ^B		
Non agonistic behavior/total (%)	0.11 (0.03) ^a	0.12 (0.02) ^a	0.04 (0.01) ^b		
Exhibition/total (%)	0.74 (0.04) ^a	0.57 (0.04) ^b	0.59 (0.05) ^b		
Physical fight/total (%)	0.15 (0.03) ^A	0.31 (0.04) ^B	0.37 (0.06) ^B		

A & B = diff. at $P \le 0.01$ within row; a & b = diff. at $P \le 0.05$ within row

To sum up the studies carried on fighting ability in Aosta Chestnut and Aosta Black Pied cattle, in terms of:

- 1. Behavioural evaluation of agonistic performances
- 2. Genetic assessment of fighting ability
- 3. Incidence of inbreeding on the trait
- General aim => to build up genetic indexes suitable for breeding



Difficulties on genetic analysis of behaviour:

- ➤ Great influence of environment (Plomin, 1990)
- → **Low heritability** (Mosseau and Roff 1987)

Mark Ridley, 2004. Modified from Hoffman 2000

Genetic investigation of fighting ability:

Data of tournaments 2001-2006

✓ Records: 16,509

✓ Participants: 5,891 cows

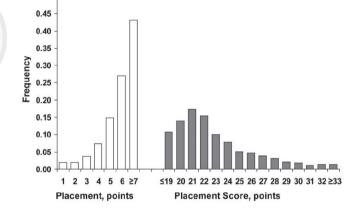
✓ Pedigree: 13,456 animals

- √ IDs and pedigree of cows
- √ winner & looser of each match
- √ individual weight, age & herd
- √ weight categories
- √ level of the battle board

(Sartori & Mantovani, 2009; 2010)

- a. Genetic evaluation
- I. Phenotype for fighting ability

Placement Score (PS) PS_{ijkl}=20+ty_i+d_j+2w_k


PS = score of cow in a given tournament


ty = type of tournament (ty=0 for heats & ty=7 for final)

d = difficulty coefficient (j=-2: >128, -1: 65-128, 0: 33-64, 1:

17-32, 2: <17 participants)

w = number of wins achieved (k=0,..., 8)

(Sartori & Mantovani, 2009; 2010)

II. Genetic model

$$y = X\beta + W_Dp_D + Z_Da_D + e$$

Vectors:

y = observations

 β = systematic fixed factors,

 p_D = permanent environmental effects

 a_D = direct additive genetic effects

e = residuals

$V \begin{bmatrix} a_{D} \\ p_{D} \\ e \end{bmatrix} = \begin{bmatrix} AVa_{D} & 0 & 0 \\ 0 & AVp_{D} & 0 \\ 0 & 0 & IVe \end{bmatrix}$

Fixed factors (b):

Day of tournament (year-battle* weight cat.)

Herd-Year

Age (in classes)

Weight by weight cat.

P<0.001 for all factors after preliminary ANOVA

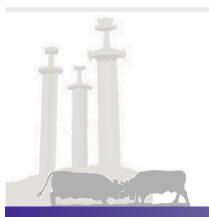
EM-REML method, single-trait animal model (Misztal, 2008)

Models comparison: Akaike Information Criterion (AIC; Akaike, 1974)

(Sartori & Mantovani, 2009; 2010)

- b. Inclusion of the competitors
 - I. Competitors within the phenotype

Competitive PS (CPS)


CPS_{ijkl}=500+ty_i+2d_j-b_k-(k-CPS_{ijka})

CPS = score of cow in a given tournament (l=individual; a=competitor)

ty = type of tournament (as in PS)

d = difficulty coefficient (as in PS)

b = highest level achieved (as for w in PS)

(Sartori & Mantovani, 2009; 2010)

b. Inclusion of the competitors

II. Competitors within the genetic model

$$y = X\beta + W_Dp_D + Z_Da_D + Z_Ca_C + e$$

$$V \begin{bmatrix} a_{D} \\ a_{C} \\ p_{D} \\ e \end{bmatrix} = \begin{bmatrix} AVa_{D} & 0 & 0 & 0 \\ 0 & AVa_{C} & 0 & 0 \\ 0 & 0 & AVp_{D} & 0 \\ 0 & 0 & 0 & IVe \end{bmatrix}$$

Vectors:

y = observations

 β = systematic fixed factors

 p_D = permanent environmental effects

a_D = direct genetic effects

a_C = indirect genetic effects (IGEs)

e = residuals

Fixed factors (b):

Day of tournament (year-battle* weight cat.)

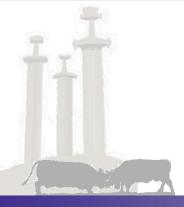
Herd-Year

Age (in classes)

Weight by weight cat.

P<0.001 for all factors after preliminary ANOVA

EM-REML method, Competitive animal model, partitioning variance approach (Arango et al., 2005; Bijma et al., 2007)



(Sartori & Mantovani, 2009; 2010)

a. Genetic evaluation

ltom	Itom AIC Troit			Variance components				SE h ²	
Item	AIC Trait	V_{a_D}	Va _C	Vр	Ve	– h²		ſ	
Classical model, no competitors	69.86	PS	0.59	-	1.26	5.91	0.076	0.042	0.239

 V_a = direct additive genetics, V_{ass} = associative genetics; V_p = permanent environmental & V_e = random residual; AIC = Akaike Information Criterion; h^2 = heritability; SE h^2 = standard error of h^2 ; r = repeatability

(Sartori & Mantovani, 2009; 2010)

b. Inclusion of the competitor

Itam AIC Trait			Variance components				- h ²	SE h²	r
Item	Item AIC Trai	Trait	$Va_{\scriptscriptstyle D}$	Va _C	Vp	Ve	-	SEN	
Classical model, no competitors	69.86	PS	0.59	-	1.26	5.91	0.076	0.042	0.239
Classical model, co mpetitor in phenotype	124.9	CPS	13.50		86.20	564.0	0.020	0.040	0.15 0
Competitive model including opponent*	34.86	PS	0.01	0.14	0.03	1.49	0.091	0.043	0.107

^{*}indirect genetic effect

More suitable models for genetic analyses

 V_a = direct additive genetics, V_{ass} = associative genetics; V_p = permanent environmental & V_e = random residual; AIC = Akaike Information Criterion; h^2 = heritability; SE h^2 = standard error of h^2 ; r = repeatability

To sum up the studies carried on fighting ability in Aosta Chestnut and Aosta Black Pied cattle, in terms of:

- 1. Behavioural evaluation of agonistic performances
- 2. Genetic assessment of fighting ability
- 3. Incidence of inbreeding on the trait

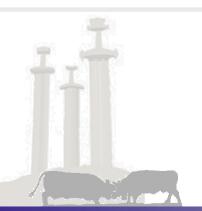
General aim => to build up genetic indexes suitable for breeding

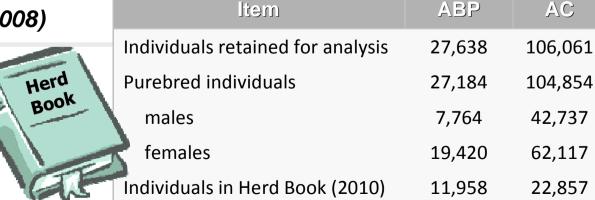
(Sartori & Mantovani, in peer review)

Data of tournaments 2001-2009

/ Records: 23,998

✓ Participants: 8,259 cows


✓ Pedigree: 17,724 animals



Reference population: individuals born in 1990-2009

F coefficient Recursive algorithm (Inbreeding) (Aguilar & Misztal, 2008)

ABP= Aosta Black Pied cattle, AC=Aosta Chestnut cattle

(Sartori & Mantovani, in peer review)

a. Comparison among genetic models including inbreeding or not

- √ 4 Models:
- ✓ Inbreeding (F): fixed effect, in classes (based on Sewalem et al., 2006; *P*<0.001 for F after ANOVA)

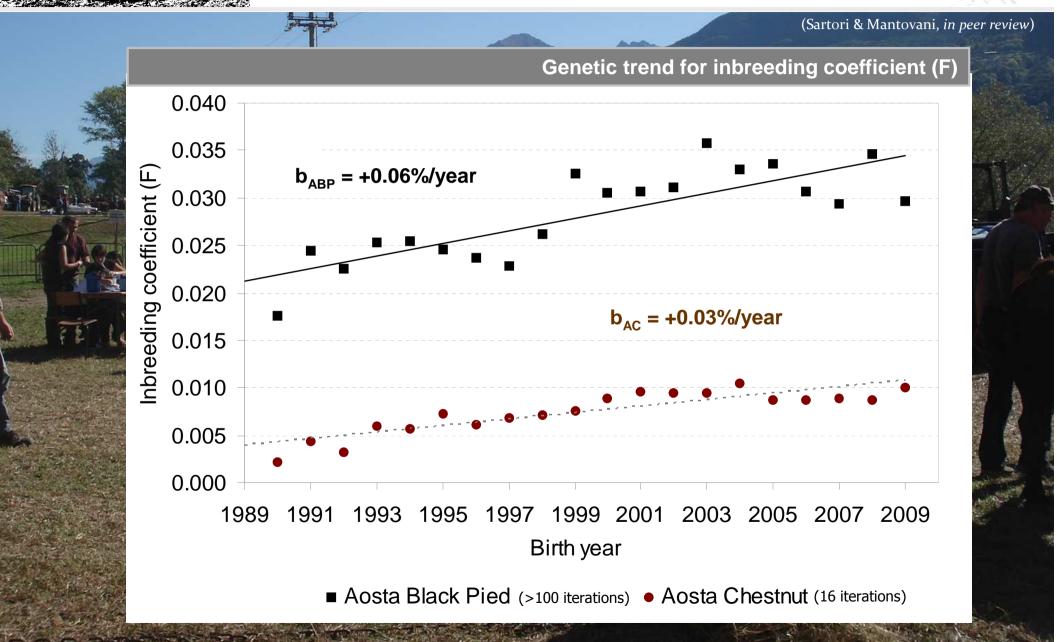
Classical model,	Classical model,
No F	+ F
Competitive model,	Competitive model
No F	+ F

EM-REML method, single-trait animal model. Competitive model, partitioning variance approach - Models comparison: AIC

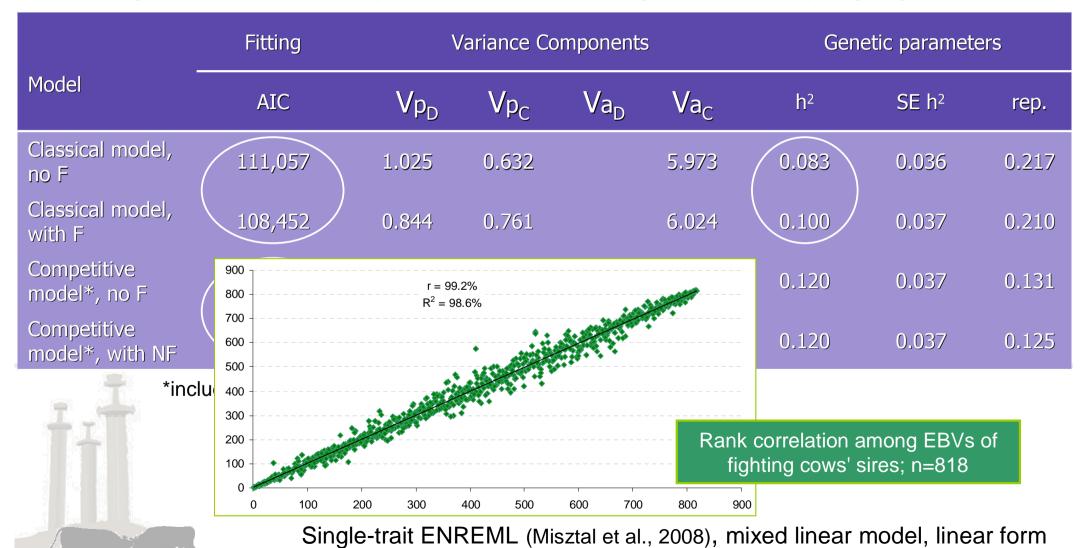
b. Linear regression of EBVs on F across and within lineages of founders

Founders

- ✓ individuals without genetic relationships in pedigree other than their heirs (Gulisija et al., 2006)
- ✓ lacking in inbreeding
- √ attained using a recursive procedure

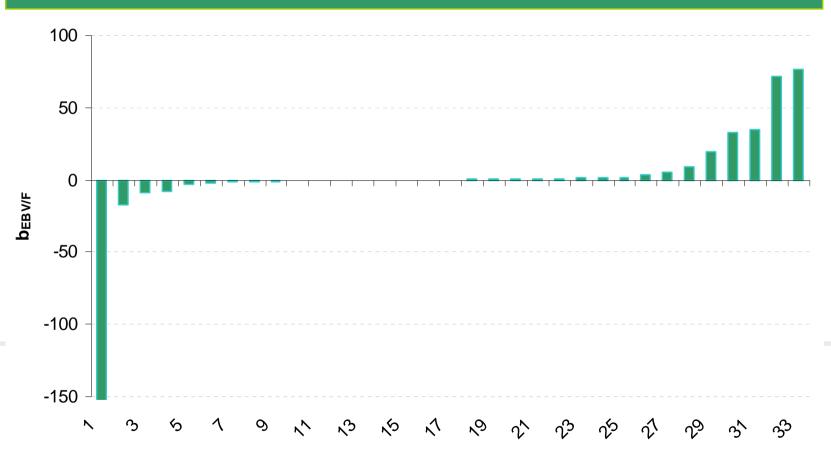

Dataset

- √ 33 lineages
- ✓ 6,087 participants (184±235 heir fighting cows/line)
- ✓ at least 10 fighting cows as offspring
- ✓ EBVs of fighting ability



(Sartori & Mantovani, in peer review)

Model fitting, variance components & parameters estimates. Average no.competitors per fighting cows = 1.886



(Sartori & Mantovani, in peer review)

Within lineage (n=33 with a mean of 184 fighters/lineage) regression coefficients between fighting ability & inbreeding coefficient (F)

Founder

Conclusions

- Traditional cow competitions of Aosta Black Pied (ABP) and Aosta Chestnut
 (AC) cattle vary in intensity during a battle and in the course of a competition
- Fighting ability can be investigated via quantitative genetics as Placement score Tournament, herd, age & weight affect the trait, which h² is about 8%
- Fighting ability expresses in a social contest, and conspecifics may be included in the genetic model as indirect genetic effects
- ABP and AC cattle show low levels of inbreeding (2.7% ABP; 0.8% AC), which influence on fighting ability is slight

Genetic correlation among fighting ability and milk & meat yields

