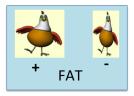
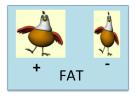
Integrating QTL controlling fatness, gene expressions and lipid metabolites to genetically dissect the adiposity complex trait in a meat chicken cross

Y. Blum^{1,2}, O. Demeure¹, C. Desert¹, J. Bertrand-Michel⁴, O. Filangi¹, P. Le Roy¹, D. Causeur², H. Guillou³ & S. Lagarrigue¹


UMR598 Animal Genetics INRA, Agrocampus Ouest Rennes,
Applied Mathematics Departement, Agrocampus Ouest, Rennes
INRA, UR66, Pharmacology and Toxicology Laboratory, Toulouse, France
INSERM, MetaToul, Lipidomic plateform, Toulouse, France

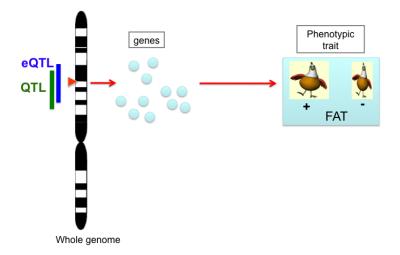
62nd Annual Meeting EAAP August 2011, Norway

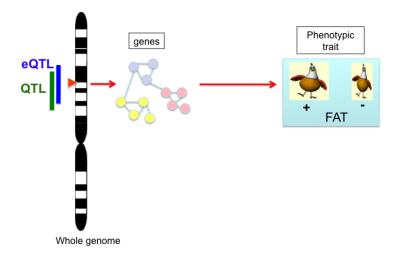

Biological context

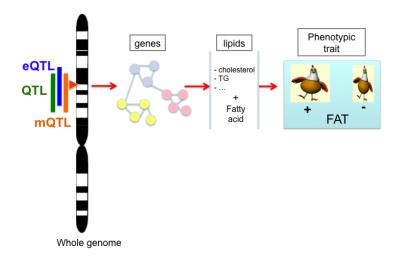
Genetically dissect $\mathbf{A}\textsc{bdominal}\ \mathbf{F}\textsc{atness}\ (AF)$ trait in meat chickens

Biological context

Genetically dissect Abdominal Fatness (AF) trait in meat chickens


Why?


- Applied research: AF not valuable in chicken carcass
- Fundamental research: To better understand the regulation mechanisms in the lipid metabolism process


Concluding comments

Concluding comments

Background

Materials

 4 families of chickens originating from crosses between 2 lines divergently selected for AF. Total of 193 animals.

AF QTL mapping

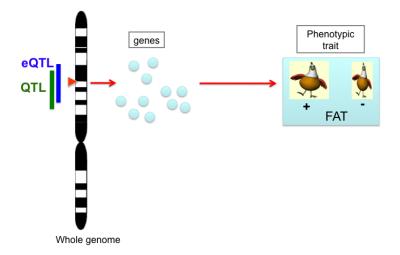
• genotyped for 1536 SNPs and 28 microsatellites covering the available genome

eQTL mapping

- Hepatic transcriptome profil (28743 probes) for 177 animals
- Hepatic lipids and fatty acid profil (cholesterol, triglycerides and 23 fatty acids) for 193 animals

QTL analyses

Using QTLmap software (Elsen et al, 1999)


GGA	Location (cM)	Significance level (a)	QTL effect (b)	Method	References
1	168.5	+	1.09	0 vs 1 QTL	McElroy et al., 2006
2	191	*	0.94	0 vs 1 QTL	Atzmon et al., 2008
19	0	*	0.85	0 vs 1 QTL	Nadaf et al., 2009
24	46	+	0.7	0 vs 1 QTL	Zhou et al., 2006; Gao et al., 2009
4	131	+	1.46	0 vs 2 QTL	McElroy et al., 2006
4	145	+	1.51	0 vs 2 QTL	-

(a) +: 10%; *:5% chromosome-wide

(b) Substitution effect; expressed in phenotypic standard deviations

Concluding comments

eQTL analyses

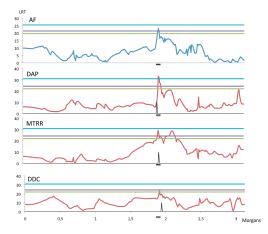
eQTL analyses

Characterization of AF QTL through eQTL

		Number of	trans-eQTL	Number of cis-eQTL		
GGA	Location (cM)	P<0.1	P<0.01	P<0.1	HGNC symbol (a)	
1	168.5	8	3	0	-	
2	191	1100	339	3	DAP**. MTRR*. DDC+	
19	0	218	11	0	-	
24	46	438	47	1	CADM1 [*]	
4	131	143	16	1	ENPEP*	
4	145	160	23	3	KLB**. TEC*. GUF1+	

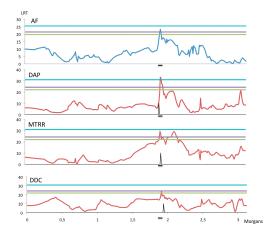
(a) +: 10%; *: 5%; **: 1% chromosome-wide

eQTL analyses


Characterization of AF QTL through eQTL

		Number of	trans-eQTL	Number of cis-eQTL			
GGA	Location (cM)	P<0.1	P<0.01	P<0.1	HGNC symbol (a)		
1	168.5	8	3	0	-		
2	191	1100	339	3	DAP**. MTRR*. DDC+		
19	0	218	11	0	-		
24	46	438	47	1	CADM1 [*]		
4	131	143	16	1	ENPEP*		
4	145	160	23	3	KLB**. TEC*. GUF1+		
(-) · · 100(. *. E0(. **. 10(

(a) +: 10%; *: 5%; **: 1% chromosome-wide


Concluding comments

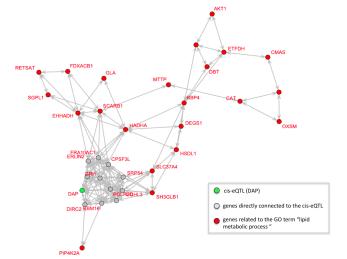
GGA2 hotspot cis-eQTL

Concluding comments

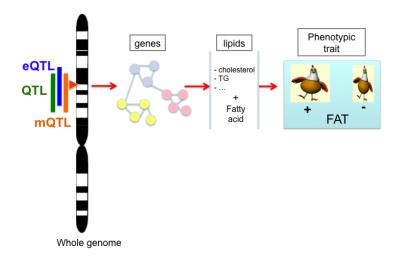
GGA2 hotspot cis-eQTL

- DAP: death associated protein
- MTRR: methyltransferase involved in methionine and folate metabolism
- DDC: L-DOPA decarboxilase

GGA2 hotspot functional characterization


Biological process enrichment tests for the GGA2 cis- and trans-eQTL

GO term	Size	Count	Pvalue	HGNC ID
-				AKT1, SH3GLB1, CAT, DBT, RBP4, GLA, EHHADH, SLC37A4,
lipid metabolic process	274	24	5.40E-04	HSDL1, FDXACB1, MTTP, SCARB1, RETSAT, HADHA, PIP4K2A,
				CRLS1, OXSM, CMAS, LIPA, ETFDH, SGPL1, PIGF, DEGS1
lipoprotein metabolic process	36	7	6.70E-04	NMT2, FDXACB1, MTTP, CD36, FNTA, PIGF
- New York and the state of the second		19	1 1 2 5 0 2	AKT1, BBOX1, NADSYN1, RARS, EXT2, GMPS, PAH, NARS2,
nitrogen compound metabolic process	206	19	1.13E-03	MED1, NIT2, RELN, TARSL2, GGH, SGPL1, TARS
ncRNA metabolic process	110	12	2.33E-03	RARS, UTP15, CPSF3L, UTP11L, ERI1, NARS2, PUS3, TRUB1,
nckina metabolic process	110			TARSL2, INTS8, TARS
detection of stimulus	25	5	3.55E-03	RBP4, SCARB1, LBP, GPR98
cholesterol transport	16	4	3.90E-03	VPS4B, SCARB1, CD36, NPC2
chemokine production	9	3	5.30E-03	MYD88, SIGIRR, SLC37A4
oxidation reduction		15	5.32E-03	CAT, PAH, UQCRC1, PLOD1, HSDL1, ACAD11, RETSAT,
				HADHA, ALDH3A2, ETFDH, SLC25A13, DEGS1
cellular carbohydrate metabolic proces		12	5.86E-03	AKT1, RBKS, RBP4, ADRA1B, MAN2B2, DHTKD1, EXT2,
central carbonyarace metabolic process	125	12	5.00L-03	SLC37A4, NARS2, EXT1, CMAS
chemical homeostasis	156	14	6.36E-03	RBP4, ADRA1B, APLP2, KNG1, SLC9A8, EDNRB, SLC37A4,
	130	14	0.302-03	ATP2A2, EIF2B2, MTTP, SCARB1, ASPSCR1, C3AR1


GO: gene ontology; HGNC: HUGO Gene Nomenclature Comittee

GGA2 eQTL sub-network

Network of the cis-eQTL DAP, its connection and the genes related to the lipid metabolic process GO term

Concluding comments

Concluding comments

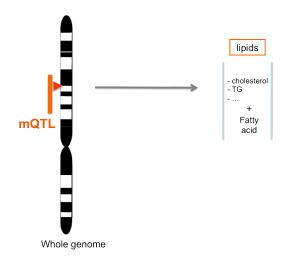
Lipid and fatty acid QTL

	Location (cM)	Significance	Lipids /
GGA	Location (civi)	level (a)	fatty acids
2	96	*	22.0
2	280	**	20:3ω3
3	48	*	EsterChol
4	73	**	51TG
4	73	+	16:1ω7
5	97.9	*	22.0
9	58	+	18:1ω7
9	58	*	20:3ω3
11	31	**	24:1ω9
14	58	*	20:3ω3
14	65	*	59TG
17	29	**	22.0
18	13.2	*	24:1ω9
22	28.6	+	22:5ω6
22	28.6	*	22:5ω3
22	37.6	*	20:3ω3
23	24	*	49TG
24	18	+	20:4ω6
24	18	+	22:5ω6
24	20	*	22:5ω3
28	39	*	57TG
28	44	*	59TG

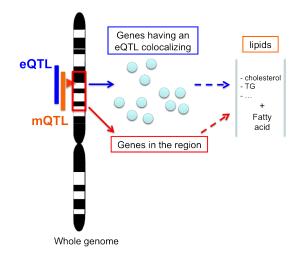
(a) +: 10%; *: 5%; **: 1% chromosome-wide

(b) Substitution effect; expressed in phenotypic standard deviations

Concluding comments


Lipid and fatty acid QTL

CC A	Location (cM)	Significance	Lipids /				
GGA	Location (civi)	level (a)	fatty acids				
2	96	*	22.0				
2	280	**	20:3w3				
3	48	*	EsterChol				
4	73	**	51TG				
4	73	+	16:1ω7				
5	97.9	*	22.0				
9	58	+	18:1ω7				
9	58	*	20:3ω3				
11	31	**	24:1ω9				
14	58	*	20:3w3				
14	65	*	59TG				
17	29	**	22.0				
18	13.2	*	24:1ω9				
22	28.6	+	22:5ω6				
22	28.6	*	22:5ω3				
22	37.6	*	20:3ω3				
23	24	*	49TG				
24	18	+	20:4ω6				
24	18	+	22:5ω6				
24	20	*	22:5ω3				
28	39	*	57TG				
28	44	*	59TG				
(-) · · 100(* E0(** 10(


(a) +: 10%; *: 5%; **: 1% chromosome-wide

(b) Substitution effect; expressed in phenotypic standard deviations

Concluding comments

Concluding comments

GGA	Location (cM)	Significance level (a)	Lipids / fatty acids	eQTL	genes in the region
28	39-44	*	57TG + 59 TG	GPAT	PIK3R2

- GPAT: enzyme involved in the triglyceride biosynthesis
- PIK3R2: regulates XBP1 (Park et al., 2010, Nature Medicine) which is a transcription factor regulating hepatic lipogenesis (Lee, et al., 2008, Science)

Detection and functional characterization of genomic regions controlling abdominal fatness

Detection and functional characterization of genomic regions controlling abdominal fatness

 \Rightarrow In progress: gene regulatory networks underlying each of the 6 AF QTL

Detection and functional characterization of genomic regions controlling abdominal fatness

 \Rightarrow In progress: gene regulatory networks underlying each of the 6 AF QTL

 No direct link between hepatic lipid / fatty acid concentrations and abdominal fatness

Detection and functional characterization of genomic regions controlling abdominal fatness

 \Rightarrow In progress: gene regulatory networks underlying each of the 6 AF QTL

 No direct link between hepatic lipid / fatty acid concentrations and abdominal fatness

 \Rightarrow In progress: gene regulatory networks underlying each of the 15 lipid- and/or fatty acid-QTL

Applied mathematics departement

Agrocampus Ouest (Rennes)

Concluding comments

Acknowledgements

Biogenouest genomic plateform

Sandrine Lagarrigue Olivier Demeure Pascale Le Roy Colette Desert Olivier Filangi

Guillaume Le Mignon

David Causeur

Magalie Houée

Chloé Friquet

Fonctional genomic plateform INRA (Rennes) Aurélie Le Cam Jérôme Montfort

INSERM (Rennes) Annabelle Etcheverry Régis Bouvet Jean Mosser

UMR LGC INRA(Toulouse)

Frédérique Pitel

ToxAlim INRA (Toulouse)

Hervé Guillou

MetaToul-INSERM (Toulouse) Justine Bertrand-Michel

UE PEAT INRA(Nouzilly)

URA INRA (Nouzilly)

Elisabeth Le Bihan Nicole Millet Marie Chabault

