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Introduction: Quantitative traits are typically influenced by a myriad of genes, whereat their

number and kind of interplay are hardly known. In breeding applications, it is of special interest

to identify the genomic regions with additive genetic effect, but the impact of non-additive ge-

netic effects (dominance, epistasis) is important, for instance, for mate allocation or for studying

heterosis effects in cross-breeding schemes. Thus, to understand the genetic architecture of a

complex trait, it is desired to distinguish the kind of genetic effect and to separate the non-zero

effects from unimportant ones. A variety of stochastic variable selection (SVS) approaches exists,

that allow for shrinkage of potential zero effects. We adapted a previously published spike and

slab approach, which enables the direct estimation of complexity parameters representing the

proportion of non-zero effects for each kind of effect. With aid of the complexity parameters, an

empirical selection procedure was appended to determine the significance of the non-zero effects

a posteriori. The suitability of this approach is verified with simulations.

Methods: We model the genetic effects in a Bayesian framework using the spike and slab

approach of Ishwaran & Rao (2005, model 4). The trait of interest y = (y1, . . . , yn)′ is fitted by

y = 1µ+ Xga + Dgd + e .

Let µ be a population mean and 1 a vector of ones. In total m loci are studied on the genome.

The X and D are the design matrices for the additive ga = (ga,1, . . . , ga,m)′ and dominance

gd = (gd,1, . . . , gd,m)′ genetic effects, respectively. It is Xi,j = ±1 and Di,j = 0 for a homozygous

genotype at locus j of animal i; the positive effect is assigned to the more frequent allele. For a

heterozygous genotype it is Xi,j = 0 and Di,j = 1. In order to obtain uncorrelated additive and

dominance genetic values, i.e. Cov(Xi,jga,j , Di,jgd,j) = 0, the columns of the design matrices are

re-parametrised according to the theory of Álvarez-Castro & Carlborg (2007). Furthermore, it is

assumed that genotypic effects at different loci are independently distributed. In order to omit

the estimation of µ, the vector of observations is shifted by their mean value. In contrast to the

originally published work (Ishwaran & Rao, 2005), we distinguish different kinds of effects and

use effect-specific hyper-parameters. We apply the following prior distributions to the model

y|ga, gd, σ
2
e ∼ N(Xga + Dgd, Iσ

2
e) ,

σ−2e |β1, β2 ∼ Γ(β1, β2) ,

gs,j |σ2s,j ∼ N(0, σ2s,j) , s ∈ {a, d}, j ∈ {1, . . . ,m} .
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The main idea is to shrink the posterior expectation

of zero genetic effects. This is done by adjusting the

value of the corresponding hyper-variance, which is

obtained from two components, i.e. σ2s,j := Js,jτ2s,j .
A latent variable Js,j is required to classify zero and

non-zero genetic effects of kind s ∈ {a, d}. The clas-

sifier depends on a complexity parameter. Because

we assume that the proportion of non-zero effects is

different for each kind of effect, we consider effect-

specific complexity parameters: ωa reflects the pro-

portion of the genome causing additive genetic vari-

ance and ωd denotes the proportion responsible for

dominance variation. The remaining prior distribu-

tions are

Js,j |ωs, v0 ∼ (1− ωs)δv0 + ωsδ1 , s ∈ {a, d}, j ∈ {1, . . . ,m} ,

ωs ∼ U [0, 1] ,

τ−2s,j |α1, α2 ∼ Γ(α1, α2) .

The symbol δx denotes the Dirac delta at point x. Thus, the hyper-variance of a genetic effect

follows the bimodal distribution

σ2s,j |ωs, α1, α2, v0 ∼ (1− ωs)Γ
−1(α1, α2v0) + ωsΓ

−1(α1, α2) .

Owing to the spike at v0 and the tail on the right, a genetic effect is either shrunk or enlarged.

Because v0 > 0 (but small), we achieve continuity of the prior distribution, which enables the

implementation of a Gibbs sampler for this hierarchical model; the details can be found in

Ishwaran & Rao (2005). The parameters α1, α2, β1, β2, v0 have to be specified a priori.

The significance test of a genetic effect gs,j of kind s ∈ {a, d} at locus j ∈ {1, . . . ,m} is carried

out via a conditional test. The hypothesis testing problem is

H0 : gs,j = 0 vs. HA : gs,j 6= 0 for j ∈ {1, . . . ,m}, s ∈ {a, d} .

In order to fulfil the condition that ωs · 100 % of the genetic effects in gs are different from

zero, we apply an empirical selection procedure. First, we evaluate how often a genetic effect

was classified as non-zero. On this account we sum over the corresponding indicator when the

burn-in phase (iteration k = 1, . . . , b) has been completed

1s,j =
B∑

k=b+1

1
(k)
s,j with 1

(k)
s,j =

 1 if J (k)
s,j = 1 ,

0 if J (k)
s,j = v0 .
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We obtain a vector (1s,1, . . . ,1s,m)′ reflecting the importance of all genetic effects. Second, we

characterise the condition for each kind of effect. Let Bs, s ∈ {a, d}, be a set containing those

indices of effects of which the importance is larger than a certain threshold Cs. The cut-off Cs

has to be chosen depending on the (estimated) complexity parameter ωs to fulfil the condition

|Bs| = |{j : 1s,j > Cs} | = ωs ·m.

Thus, the cut-off is determined as the empirical ωs-quantile of 1s,1, . . . ,1s,m. Eventually, the

conditional test ψ can also be written as

ψ(gs,j | |Bs| = ωs ·m) =

{
1 if 1s,j > Cs ,

0 else .

That means, H0 is rejected for gs,j if this effect was classified as non-zero more than Cs times.

Simulation study: The simulated scheme resembles a dairy cattle population. On the genetic

level, the information of single nucleotide polymorphisms (SNP) is employed. We applied a

mutation-drift model and simulated a population with effective population size of 100 animals

and 52,273 SNP markers on a 30 Morgan genome (in style of the Illumina Chip BovineSNP50).

The details of simulation can be found in Melzer et al. (2011). Two main scenarios were set

up which differed in the number of QTL. Either 23 or 230 SNP loci were randomly chosen to

be the QTL. Allele substitution effects were drawn from a gamma distribution with fixed shape

parameter and varying scale parameter depending on the number of QTL similar to Meuwissen

et al. (2001). The sign of an allele substitution effect was drawn at random with equal chance.

Dominance coefficients were drawn from a normal distribution (Bennewitz & Meuwissen, 2010).

The residual variance component was determined depending on the broad-sense heritability of

H2 = 0.5. The two training generations consisted each of 50 half-sib families with 20 offspring.

These individuals were genotyped and phenotyped (n = 2, 000). The test generations were built

up the same way. The scenarios were repeated 100 times. We carried out 50,000 Gibbs sampling

rounds of SVS, but 40 % were omitted as burn-in. We set the prior parameters β1 = β2 = 0.0001,

α1 = 5, v0 = 0.001 and studied two choices of α2: α2 = 0.1 (called P1) and α2 = 0.01 (called

P2). The prior density with parameter constellation P1 is similar to the BayesB prior, whereas

the prior density with P2 is more alike the BayesA prior (Meuwissen et al., 2001).

The estimated components were compared with results obtained from BayesB. This MCMC

approach is similar to the presented SVS method in assuming a bimodal prior for the hyper-

variance, but this prior is not continuous. For this reason, BayesB invokes a Metropolis-Hastings

(MH) algorithm. Furthermore, prior knowledge about the proportion π of non-zero genetic

effects in total is required; we set π = 0.005 in the 23-QTL scenario and π = 0.05 in case of 230

QTL. We carried out 50,000 MCMC rounds (40 % burn-in) and within each iteration 1,000 MH

steps were executed.

Results and discussion: For a simulation example, Figure 1 shows the estimated additive and

dominance genetic effects. Large effects were estimated well and their significance (indicated by
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Figure 1: Simulation example; estimates of (a) additive and (b) dominance effects in the 23-QTL
scenario (P2). Accuracy of genetic value prediction was 0.947 in this dataset.

a star) could be proved in most cases. Moderate to small effects, especially dominance effects,

could hardly be identified. In order to improve parameter estimation, one could retain the

significant effects and repeat the statistical analysis.

All simulated QTL caused both additive and dominance effects, but the proportion of non-zero

dominance effects was seriously underestimated in all scenarios. The choice of the parameter

α2 affected the amount of bias, see Table 1. Best results in terms of estimated complexity

parameters were obtained with parameter constellation P2. The estimated proportion of non-

zero additive effects coincided roughly with the simulated number of QTL, whereas only 0.2 % of

the loci were estimated to contribute to dominance variation ignoring the real number of QTL.

In any case, the accuracy of prediction was at a high level depending on the number of QTL. The

genetic variance components estimated with P1 were less biased compared with P2 and rather

similar to the analysis with BayesB. In the simulated scenarios, where the dominance effects of

23 or 230 loci caused approximately 5 % of the genetic variation, dominance plays a subordinate

role in genomic selection and may be neglected. A more interesting scenario appears if a few

loci contribute to a larger extent of dominance variation. In this case, methods for genetic

value prediction may be improved by including some additional parameters for those loci with

significant dominance effect.

The results obtained with the SVS approach may also be utilised in one-step approaches in the

field of genomic selection. Therein the genetic value is determined e.g. via BLUP, where a

genomic relationship matrix is required. This matrix is calculated on the basis of genome-wide

marker information and at this point it would be possible to provide loci with a larger weight

to emphasise the significant loci. The amount of extra weight could also be concluded, in some

way, from the vector of importance.

Conclusions: The presented SVS approach with appended selection procedure is useful to

estimate additive and non-additive genetic effects and to test the significance thereof. A com-
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Table 1: Average estimated variance components and complexity parameters (standard deviation
in parenthesis) in training set and average correlation ρ of predicted genetic values in test set.

Method σ2a σ2d σ2e ωa ωd ρ

23
-Q

T
L

sc
en

ar
io SVS P1 0.727

(0.569)
0.037

(0.037)
0.653

(0.611)
0.002

(0.001)
0.001

(0.000)
0.952

SVS P2 0.699
(0.555)

0.027
(0.034)

0.768
(0.621)

0.006
(0.002)

0.002
(0.001)

0.977

BayesB 0.743
(0.578)

0.035
(0.039)

0.775
(0.605)

– – 0.980

Simulated 0.757 0.040 0.798 0.004 0.004 –

23
0-

Q
T

L
sc

en
a
ri

o SVS P1 0.541
(0.180)

0.022
(0.023)

0.666
(0.228)

0.007
(0.001)

0.001
(0.000)

0.872

SVS P2 0.468
(0.145)

0.015
(0.021)

0.753
(0.225)

0.023
(0.004)

0.002
(0.001)

0.881

BayesB 0.631
(0.204)

0.056
(0.035)

0.652
(0.180)

– – 0.860

Simulated 0.709 0.043 0.754 0.044 0.044 –
variance components: σ2

a additive, σ2
d dominance; σ2

e residual; complexity parameter: ωa additive, ωd dominance

plexity parameter is evaluated for each kind of effect, which enables the study of the genetic

architecture of the underlying trait. In simulations, where most of the genetic variation was

caused by additive effects, it was also possible to assess the contribution of dominance effects.

In general, the inclusion of epistatic effects is possible as well, but this issue remains a question

of computational effort.
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