

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Economic Affairs FDEA Agroscope Liebefeld-Posieux Research Station ALP

Bern University of Applied Sciences Swiss College of Agriculture SHL

The relationship between diet characteristics, milk urea, nitrogen excretion and ammonia emissions in dairy cows

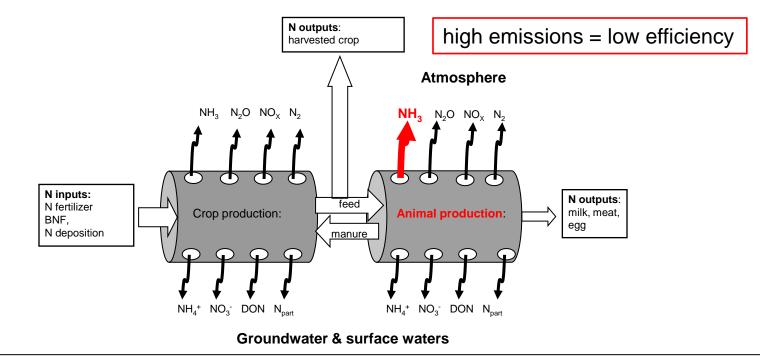
Annelies Bracher Patrick Schlegel Andreas Münger Walter Stoll Harald Menzi

EAAP Stavanger 2011 Annelies.Bracher@alp.admin.ch

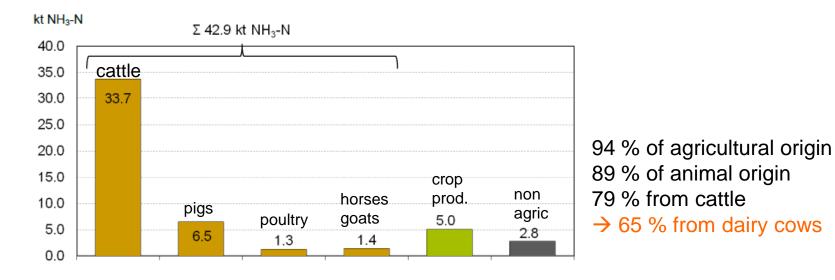
Gothenburg Protocol: emission ceilings for pollutants

> also for ammonia (NH3)
> direct link to N flow

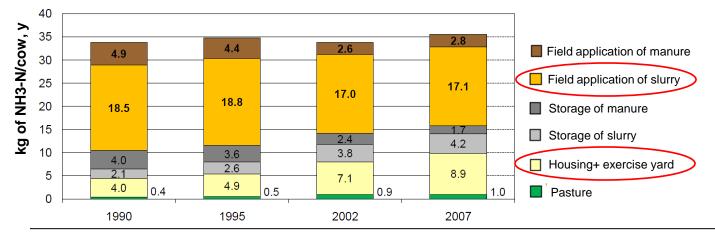
> urea main precursor of ammonia



fecal urease


Urea

Ammonia


N flow and N emission in agriculture (after Oenema cited in EPMAN 2009)

Partition of NH3 emissions in Switzerland for 2007 (ammonia emission inventory, Kupper 2009)

NH3-N emission sources in dairy cows (ammonia emission inventory, Kupper 2009)

Strategies to reduce NH3 emissions

- 1. Reduce N excretion
- 2. (Reduce the volatile N fraction: TAN (total ammonical N), urinary N, urea /

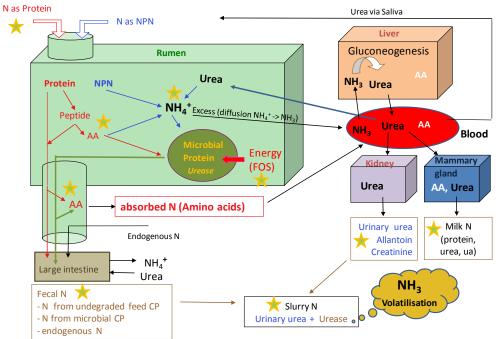
Ammonia emission potential = f(excreta quantity, quality)

3. Optimize the chemical-physical environment: housing, storage, (field application

Ammonia volatilization = f(emission rate)

Implementation in Switzerland

Cantonal **resource programs**: NH3 , N-efficiency


- encourage on-farm measures by direct payments:
 for instance field application by trail hose → end-of pipe measure
- planned: feeding measures = begin-of-pipe measure

Objectives and methods

- evaluate potential feeding measures in dairy cows to mitigate NH3 emissions and improve N efficiency
- evaluate possible indicators to assess the effect of feeding measures on ammonia emissions (literature review)
- analyze data from Swiss feeding and N-balance trials and derive relationships between N-input, N-excretion, diet characteristics and milk urea
- model calculation of N excretions over lactation cycle
- model calculation of ammonia emissions, quantification of feeding measures

\rightarrow the best diet for environmental efficiency, particularly N

Feed Crude Protein (N*6.25) Feed Energy (Sta, Su, NDF, Pec)

Particularities:

- ruminal feed protein degradation
- energy dependent microbial protein synthesis
- interaction between energy and protein
- diffusion of excess ammonia into blood
- detoxification of blood ammonia in the liver
- urea recycling
- urea main urinary N fraction
- high correlation between blood, urine and milk urea

Causes for high urinary urea excretion

- energy-protein imbalance in the rumen (quantity, timing)
- postruminal protein oversupply
- metabolic losses

Indicators for high urinary urea

avoidable NH3+urea sources	dietary indicators			
ruminal protein-energy balance	PMN-PME, g/kg DM, g/day PMN g/kg DM = CP*[1- {1.11*(1- degCP/100)}] PME g/kg DM = 0.145*FOM FOM g/kg DM = DOM -CP*(1-degCP/100)-at-ST*(1-degST/100)-FP/2 N/DOM, N/FOM, g/kg			
cow protein-energy balance	CP/NEL, g/MJ			
protein oversupply	CP intake, CP g/kg DM APD supply - APD requirement			
metabolic indicators: milk urea (MUC) mg/dl blood urea urinary urea g/l				
PMN = microbial protein from ruminal N PME = microbial protein from ruminal energy \rightarrow energy intake limits protein synthesis CP = crude protein				

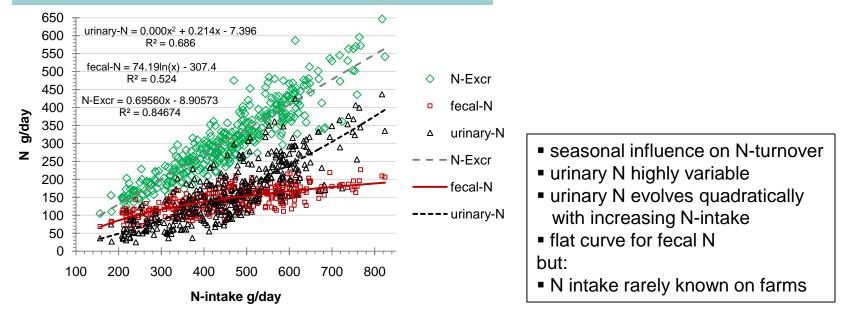
CP = crude protein

degCP = protein degradability

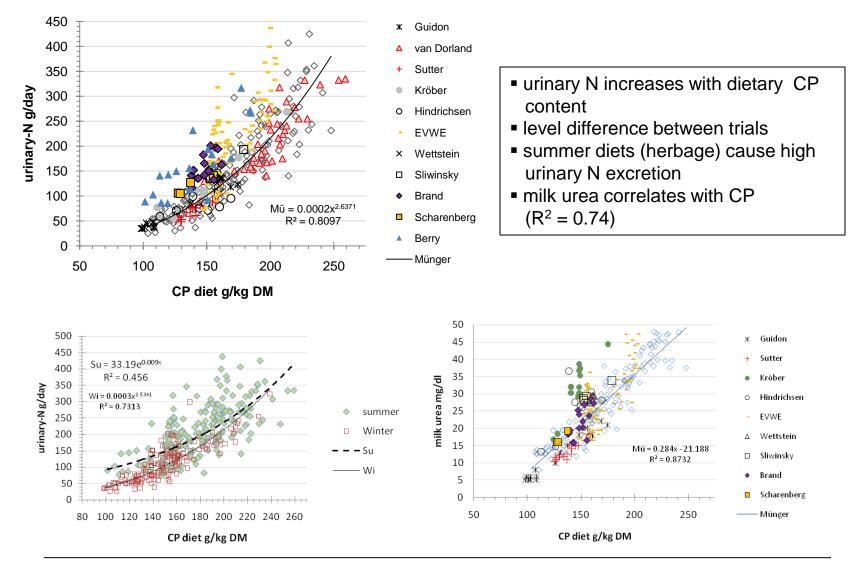
DOM = digestible organic matter

FOM = fermentable organic matter

APD = absorbable protein at small intestine

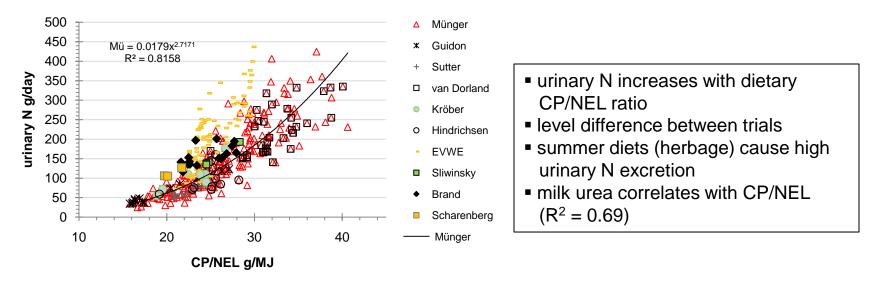

NEL = net energy lactation

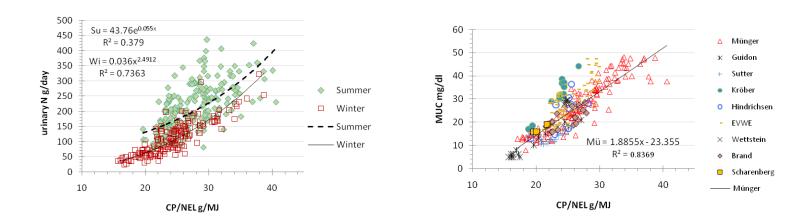
EAAP Stavanger 2011


Analysis of N-balance trials

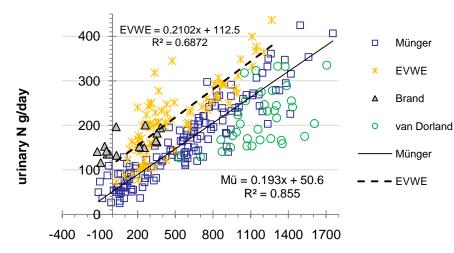
Group	n	NEL MJ/kg DM	CP g/kg DM	N-intake g/day	fecal-N g/day	urinary-N g/day	urine-N /N-Exkr %	Milk kg ECM	MUC mg/dl
dry cows	31	4.9	109	132.54	54.25	37.16	27.0	-	-
lact cows winter diets	165	6.15	148.3	399.9	144.9	109.9	41.0	23.0	20.0
lact cows summer diets	191	6.61	182.6	515.6	143.7	214.0	58.54	26.6	30.5

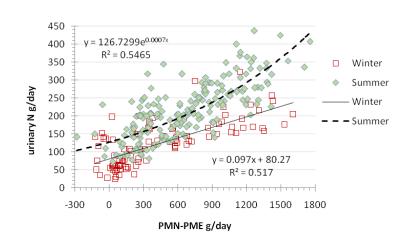
Partition of N excretion in lactating dairy cows

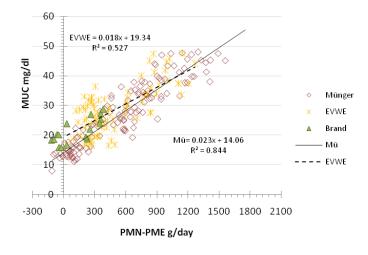


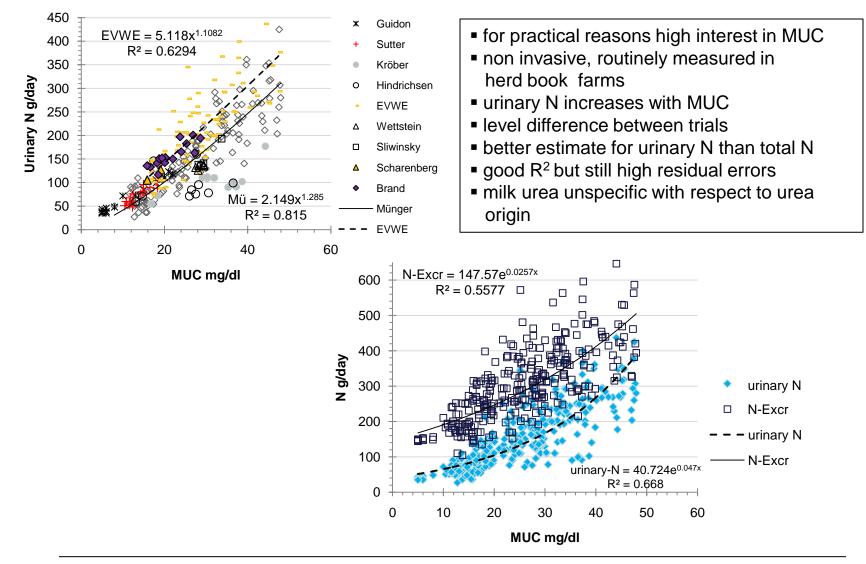

Urinary N, dietary crude protein (CP) and MUC

EAAP Stavanger 2011

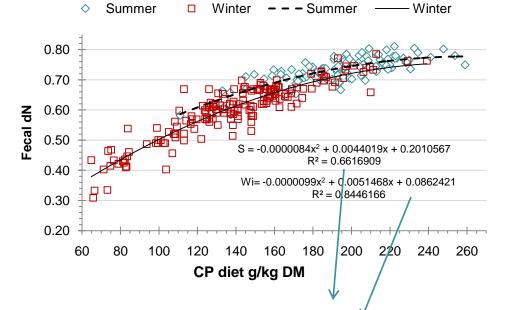

Urinary N, dietary CP/NEL-ratio and MUC


EAAP Stavanger 2011


Urinary N, ruminal protein balance and MUC



- urinary N increases with dietary ruminal protein balance
- Ievel difference between trials
- summer diets (herbage) cause high urinary N excretion
- milk urea correlates with PMN-PME (R² = 0.74)


Estimation of N excretion from milk urea

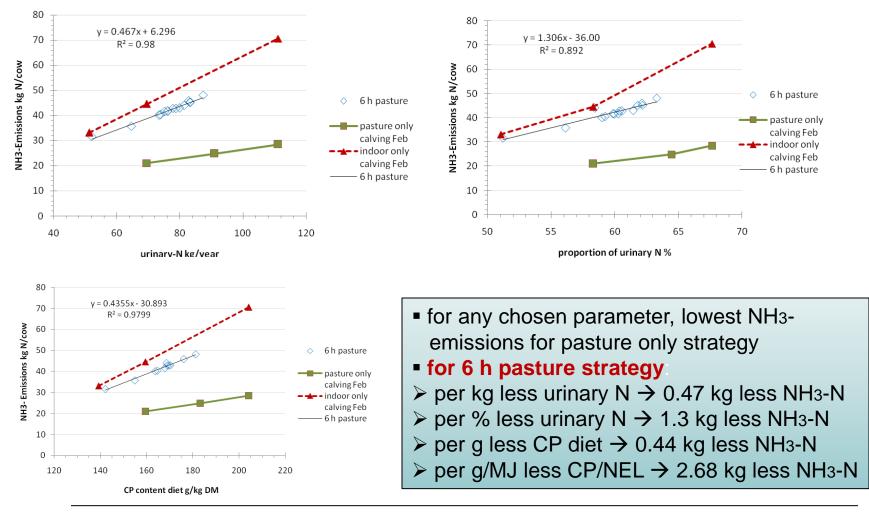
Agroscope

Model calculation of N excretion

- Lactation curve to predict milk yield on a weekly basis
- Implemented intake curve to predict feed intake, CP and NEL content of diet on a weekly basis

- fecal-N g/day = Feed-N (g/day) * (1-dN)
- urinary-N g/day = Feed-N (g/day) Milk-N (g/day) fecal-N (g/day)
- N balance = 0

Grassland based vs maize based feeding


	Grassland based	Maize based TMR
milk yield kg ECM	7000	7000
calving	20. oct	20. Oct
winter diet	Hey (50 %), GS (50 %), conc	MS (40 %), GS, hey, fodder beets, conc
summer diet	100 % grass, 21 % of CP, no suppl	MS (40 %), hey (20 %), grass (40 %)

Agroscope

Model calculation of NH₃-emissions per cow and year

Model farm: loose housing, slurry production, excercise yard, no pasture, 6 h pasture or 20 h pasture over 210 days, covered slurry tank, surface spreading, TAN-flow model (http://agrammon.ch).

The best diet for environmental efficiency: an attempt to define guidelines

Diet (at any moment during lactation)

- CP content < 18 %</p>
- CP/NEL ration < 25 g/MJ</p>
- N/DOM ratio < 40 g/kg</p>
- ruminal protein balance < 600 g/day, < 30 g/kg DM (PMN-PME)
- milk production potential of diet adapted to requirement
 Feeding technique
- balanced TMR
- Pasture. Supplements to correct N excess and/or adapt grass quality to lactation stage. NH3-emissions are low but other N-losses may occur and N-efficiency at cow and farm level is reduced.

Milk urea

■ < 25 mg/dl

Agroscope