

Genetic analysis of calf livability in Dutch dairy cows

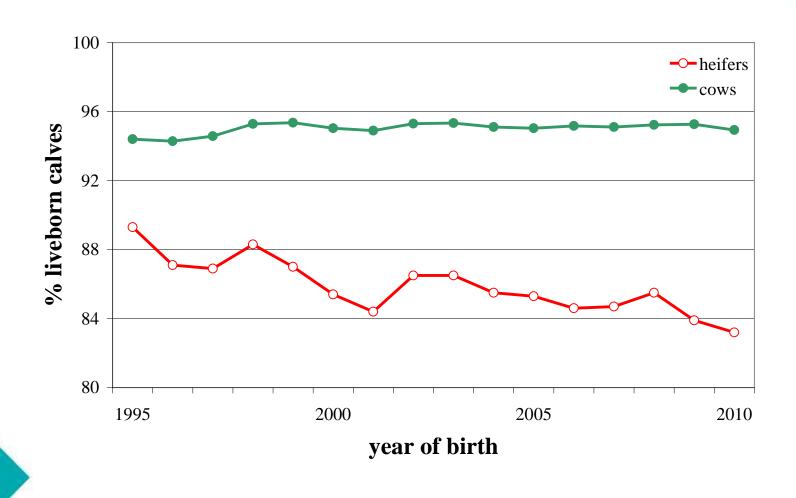
Mathijs van Pelt Animal Evaluation Unit

30 August 2011

- Introduction
- Aim of study
- Material & Methods
- Results
- Conclusions

Introduction

Definition of livability


- a live-born calf is a calf that is still alive 24 hours after birth
- a stillborn calf is a calf that dies before, during or within 24 hours after birth
- livability or calf vitality = 1 stillbirth

Phenotypic trend for livability

- stable for cows
- negative for heifers

Phenotypic trend livability - Holstein

- Introduction
- Aim of study
- Material & Methods
- Results
- Conclusions

Aim of study

 Investigation which factors are causing the decline of heifer livability

with focus on genetics

- Introduction
- Aim of study
- Material & Methods
- Results
- Conclusions

Material & Methods

Analysis I

genetic analysis to estimate variance components

Analysis II

- use results analysis I in a breeding value estimation
- investigate effects in model

Data recording

- All live-born calves are eartagged and registered in the Dutch identification & registration system (I&R)
- A calf is considered stillborn if the dam has a calving date, but no calf is registered with the I&R system

I. Data selection

- Calvings from 2003 until 2008
- Herdbook registered calves with at least 75%HF (for dam as well)
- Gestation length between 260-300 days
- No multiple births
- No ET-calves
- On farm level
 - at least 80 births for heifers and 200 births for cows
 - 1 out 3 herds selected at random
- Total dataset 790,643 records
 - 266,578 calvings of heifers
 - 656,801 calvings of cows

I. Statistical model

Heifers: Y = A + M + H + sire + mgs + e

Cows: Y = P + M + H + sire + mgs + perm + e

• Y = observation for livability

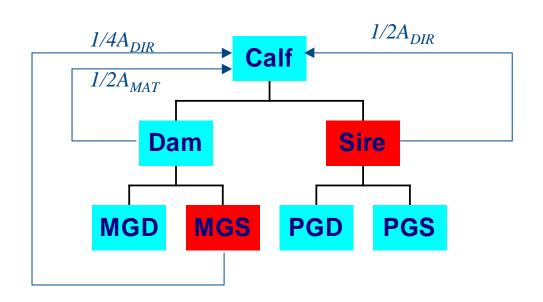
A = age at calving fixed

fixed = parity number • P

• M = year x month of calving fixed

• H = herdfixed

• sire = sire of the calf random


• mgs = sire of the dam random

• perm = permanent environment random

random = residual e

From sire and mgs variances to direct and maternal variances

$$\sigma_{A_{DIR}}^2 = 4 * \sigma_{A_{SIRE}}^2$$

$$MGS = \frac{1}{2}A_{MAT} + \frac{1}{4}A_{DIR} \quad \Longrightarrow \quad A_{MAT} = 2*MGS - SIRE$$

$$\sigma_{A_{MAT}}^{2} = 4 * \sigma_{A_{MGS}}^{2} + \sigma_{A_{SIRE}}^{2} - 4 * \sigma_{A_{S,MGS}}^{2}$$

II. Analysis decline heifer livability

- Breeding value estimation
 - Multi Trait Animal Model
 - correlated direct and maternal effect
- Effects in model for heifers
 - HYS management group
 - YM year x month
 - ageage at calving
 - cow– maternal effect
 - calf– direct effect
- Calculation of average solution per year x month

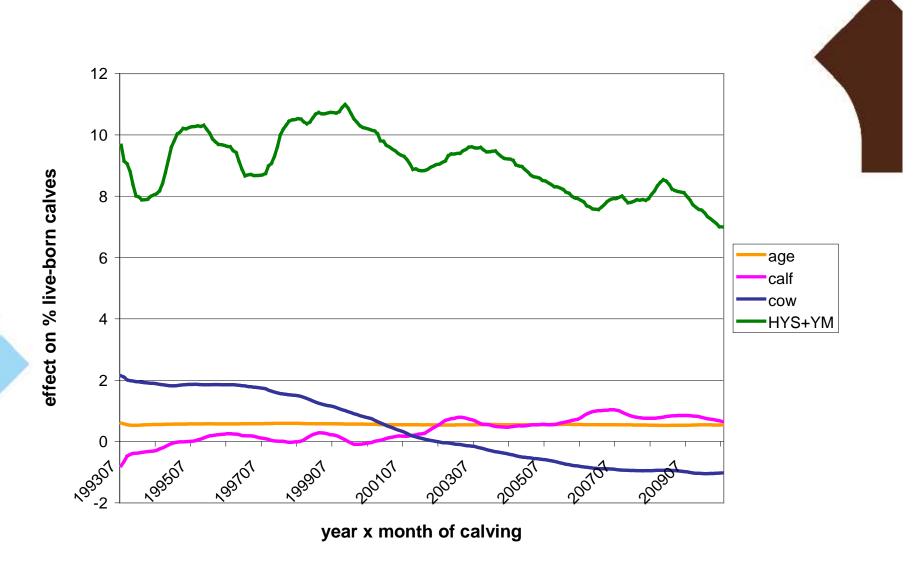
- Introduction
- Aim of study
- Material & Methods
- Results
- Conclusions

	Mat. Liv. Heifers	Mat. Liv. Cows	Dir. Liv. Heifers	Dir. Liv. Cows	Genetic SD (%)
Mat. Liv. Heifers	0.085				10.79
Mat. Liv. Cows	0.524	0.005			1.53
Dir. Liv. Heifers	-0.156	0.214	0.038		7.20
Dir. Liv. Cows	0.090	0.358	0.570	0.005	1.48

	Mat. Liv. Heifers	Mat. Liv. Cows	Dir. Liv. Heifers	Dir. Liv. Cows	Genetic SD (%)
Mat. Liv. Heifers	0.085				10.79
Mat. Liv. Cows	0.524	0.005			1.53
Dir. Liv. Heifers	-0.156	0.214	0.038		7.20
Dir. Liv. Cows	0.090	0.358	0.570	0.005	1.48

	Mat. Liv. Heifers	Mat. Liv. Cows	Dir. Liv. Heifers	Dir. Liv. Cows	Genetic SD (%)
Mat. Liv. Heifers	0.085				10.79
Mat. Liv. Cows	0.524	0.005			1.53
Dir. Liv. Heifers	-0.156	0.214	0.038		7.20
Dir. Liv. Cows	0.090	0.358	0.570	0.005	1.48

	Mat. Liv. Heifers	Mat. Liv. Cows	Dir. Liv. Heifers	Dir. Liv. Cows	Genetic SD (%)
Mat. Liv. Heifers	0.085				10.79
Mat. Liv. Cows	0.524	0.005			1.53
Dir. Liv. Heifers	-0.156	0.214	0.038		7.20
Dir. Liv. Cows	0.090	0.358	0.570	0.005	1.48


	Mat. Liv. Heifers	Mat. Liv. Cows	Dir. Liv. Heifers	Dir. Liv. Cows	Genetic SD (%)
Mat. Liv. Heifers	0.085				10.79
Mat. Liv. Cows	0.524	0.005			1.53
Dir. Liv. Heifers	-0.156	0.214	0.038		7.20
Dir. Liv. Cows	0.090	0.358	0.570	0.005	1.48

	Mat. Liv. Heifers	Mat. Liv. Cows	Dir. Liv. Heifers	Dir. Liv. Cows	Genetic SD (%)
Mat. Liv. Heifers	0.085				10.79
Mat. Liv. Cows	0.524	0.005			1.53
Dir. Liv. Heifers	-0.156	0.214	0.038		7.20
Dir. Liv. Cows	0.090	0.358	0.570	0.005	1.48

II. Decline of heifer livability

II. Decline of heifer livability

- Age at calving has no impact on the decline
- Calf has a slighty positive effect of around 1% on the decline
- Cow has a negative effect of 3% on the decline and seems to stabilise
- HYS+YM has a negative effect of 4% on the decline since 2000

- Introduction
- Aim of study
- Material & Methods
- Results
- Conclusions

Conclusions

I. Role of genetics

- possible to estimate genetic parameters with sire model
 - multi trait
 - correlated direct and maternal effect
- livability from heifers and cows are different traits
 - heritabilities
 - genetic correlations
 - genetic standard deviation

II. Decline of heifer livability caused by

- genetic ability of the maternal effect
- herd + time effects

Conclusions

- Change of breeding goal
 - improving heifer livability
 - change negative phenotypic trend
- Further research
 - other effects
 - genetics; inbreeding
 - management; …

