Genetic evaluations, genetic trends and inbreeding in Scandinavian trotter populations Thorvaldur Árnason, IHBC, AUI

Introduction

- Trotting harness racing is a popular sport and a big industry in Scandinavia
- In Norway and Sweden there are two main breeds of trotters: Standardbred trotter (ST) and Nordic trotter (NT)
- 6000 ST foals and 1300 NT foals born annually in both countries

Genetic evaluations

- Genetic evaluations by MT-AM-BLUP have been practiced in Swedish Standardbred Trotters (SST) and Nordic Trotters (NT, common evaluation in Norway and Sweden) since 1992
- Accumulated annually summarized racing records for 3-5-year-olds in SST and for 3-6year-olds in NT

Traits, transformations and heritabilities

In SST:				
1)	(Number of races) ^{0.2}	0.18		
2)	Racing status (0/1)	0.40		
3)	(Percentage ranked 1-3 in races) ^{0.8}	0.35		
4)	Ln(Earnings + 1000)	0.44		
5)	Ln(Earnings + 1000)/number of races	0.39		
6)	Ln(Best racing time per km – 68.2 sec)	0.38		
In NT:				
1)	Racing status (0/1)	0.20		
2)	(Percentage ranked 1-2 in races) ^{0.5}	0.25		
3)	(Standardized earnings) ^{0.25}	0.30		
4)	(Best racing time per km) ^{0.5}	0.35		

Material for genetic evaluations (2010)

In SST: Pedigree file: 236,059 animals Records on racing status: 143,216 Records with racing results: 85,848 (59.9%)

In NT: Pedigree file: 102,923 animals Records on racing status: 57,046 Records with racing results: 25,669 (45%)

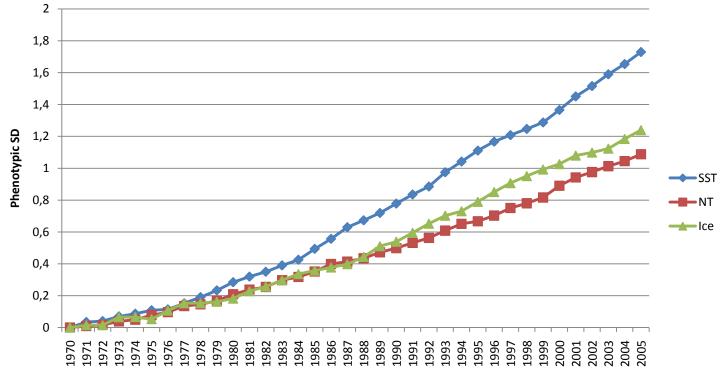
Statistical models

In SST:

Y = Genetic base group + Fixed effects of sex/birth-year + animal + e

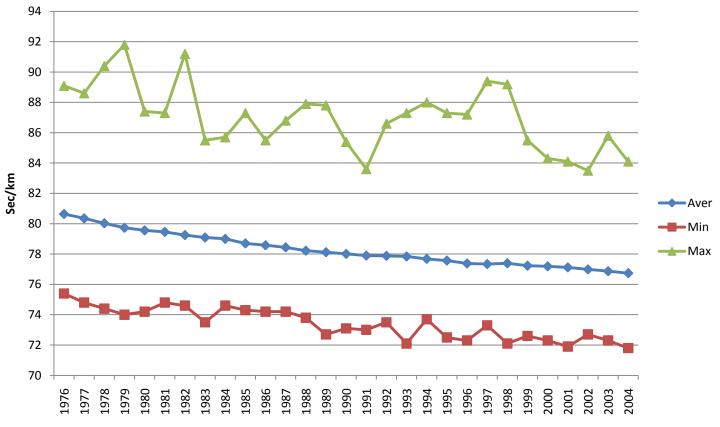
In NT:

Y = Fixed effects of country/sex/birth-year + animal + e

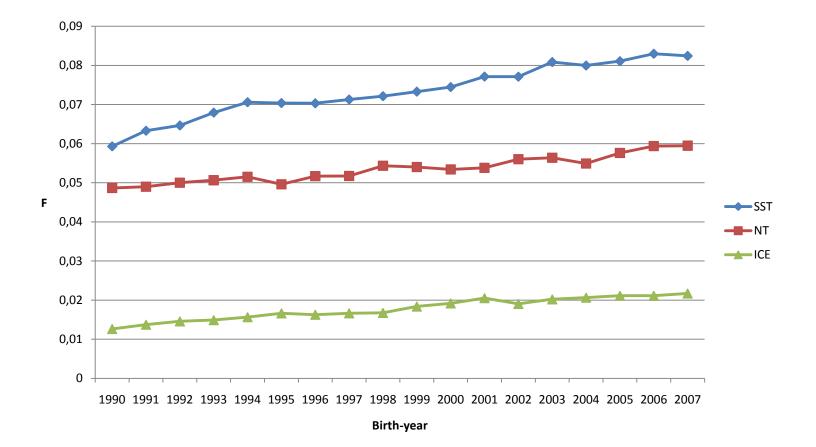

Aggregate genotype, scale and presentation of index in SST

- Scale: Horses born in Sweden last ten years build a reference base with mean of 100. The distribution in index for each trait is scaled such that 10 index units correspond to 1 σ_A
- A racing performance index is published as an average of indices for rank 1-3, earnings and earnings per race. Indices for number of races and racing status also published
- An aggregate total index is computed as: 0.05(number of races) + 0.75(racing performance) + 0.20(racing status)

Aggregate genotype, scale and presentation of index in NT


- Scale: All horses with records on racing status (born 1971-2007) build a reference base with mean of 100. The distribution in index for each trait is scaled such that 10 index units correspond to one standard deviation in the index values
- The racing performance index is the index for earnings standardized within birth-year and country. Index for racing status also published
- An aggregate total index is computed as:
 0.60(racing performance) + 0.40(racing status)

Realized genetic progress in the aggregate phenotype (σ_P)


Birth-year

Observed trend in best racing time records as 3-5-year-olds SST

Birth-year

Trends in inbreeding coefficients (F)

New analysis on records from individual races in SST

- Repeatability models (preliminary results)
- Random regression models (planned)
- Bayesian Thurnstonian models (planned)
- Comparisons with the present BLUP model, model validations

Genetic analysis by repeatability model in SST

- Material for estimation of genetic parameters: Year 2010: 76,306 records from 7,854 races on 10,708 animals (33,117 animals in pedigree)
- Year 1995: 86,163 records from 8,476 races on 12,496 animals (32,752 animals in pedigree)
- Traits: racing time per km, placing status and In(earnings + 200)
- Model: y = race + age + sex + a + pe + driver +

Results: genetic parameters

Univariate analysis:

Km time:	Placing status:	Earnings:			
2010 data:					
$h^2 = 0.13$	0.08	0.06			
t= 0.30	0.20	0.17			
d*= 0.15	0.05	0.04 (d*=Var _{driver} /Var _P)			
1995 data:					
$h^2 = 0.18$	0.08	0.06			
t= 0.40	0.20	0.15			
d*= 0.05	0.04	0.03 (d*=Var _{driver} /Var _P)			

Results: genetic parameters

Bivariate analysis (2010):

Km time: h ² = 0.12 t= 0.30	Placing status: 0.09 0.22	Earnings: 0.07 0.19
Correlations: r _A \r _{pe} - -0.99 -0.99	-0.79 - 0.99	-0.82 0.98 -
r _e \r _{driver}	-0.93	-0.95
-0.56	-	1.00
-0.62	0.80	-

Results: BLUP analysis

Material: Data on individual races 1995-2010. N records=1,302,811. N animals in pedigree=236,059. N animals with data=63,768. N drivers=6,979. N races=132,085

Model: y = race + age + sex + a + pe + driver + e

Corelations between BLUPs all: - (Horses born \geq 1990):

	Km time	Placing status	Earnings
Number of races	-0.70(-0.67)	0.67(0.64)	0.69(0.65)
Racing-status	-0.71(-0.68)	0.69(0.67)	0.70(0.68)
Placing%	-0.86(-0.89)	0.84(0.89)	0.85(0.89)
Acc. Earnings	-0.85(-0.89)	0.83(0.88)	0.84(0.88)
Acc. earnings/race	-0.88(-0.91)	0.86(0.91)	0.87 <mark>(0.91</mark>)
Best km time	0.85 (0.89)	-0.83(-0.88)	-0.85(-0.88)

Summary and conclusions

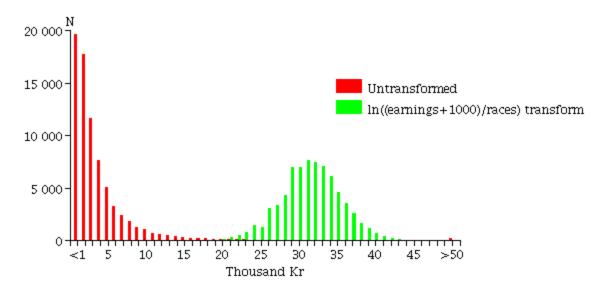
- The current models with accumulated racing results are robust and well accepted by the breeders
- They reflect the breeding goal well and offer the flexibility of inclusion of foreign racing results
- Genetic evaluation of racing-status valuable and adjusts for selection bias
- In SST (NT) the annual rate of genetic gain is 7% (4%) of σ_P over the last decade

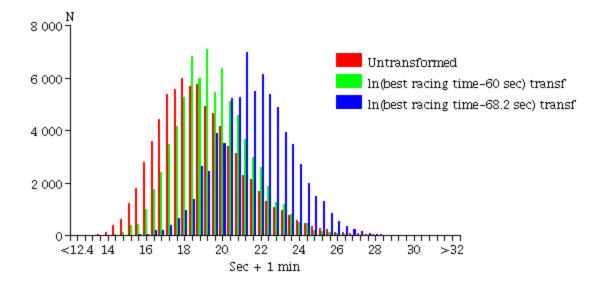
Summary and conclusions

- The high level of inbreeding and high rate of inbreeding per generations (N_e = 40 for SST, 50 for NT) is of concern and promotes use of methods for long-term genetic progress
- In SST the estimated annual inbreeding depression correspond to 0.4% of σ_P (6% of annual genetic gain)
- Analyses of results from individual races are on the way and will be validated and compared with the current model for genetic evaluations

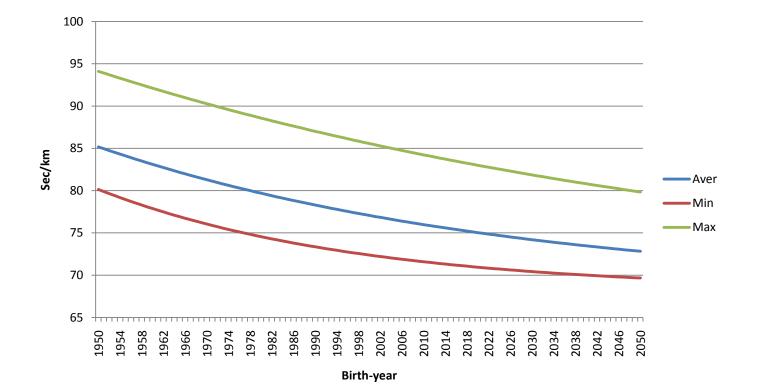
Acknowledgements

 Access to the data from the Swedish and Norwegian Trotter associations and financial founding from the former is greatly acknowledged




N 30 000 Г Untransformed 20 000 ln(Earnings + 1000 kr) transform 10 000 0 <20 100 300 700 800 200 400 500 600 900 >1000 Thousand Kr

Distribution Earnings:


Distribution Earnings per race:

Distribution Best racing time:

Predicted trend in best racing time records as 3-5-year-olds SST

