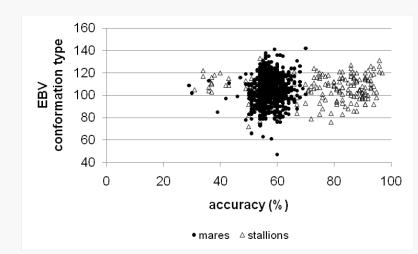


Photo: M. Rindlisbacher

Genetic analyses of the Franches-Montagnes horse breed with genome-wide SNP data

H. Hasler¹, C. Flury¹, B. Haase², D. Burger³, C.Stricker⁴, H. Simianer⁵, T. Leeb², S. Rieder¹

¹Berne University of Applied Sciences, Swiss College of Agriculture, Zollikofen, Switzerland ²Institute of Genetics, Vetsuisse Faculty University of Bern, Switzerland ³Swiss National Stud Farm, Avenches, Switzerland ⁴agn Genetics GmbH, Davos, Switzerland ⁵Department of Animal Sciences, Animal Breeding and Genetics Group, Georg-August-University, Göttingen, Germany


EAAP 2011, Stavanger (Norway)

Material & selection of horses

- Selection of ~1'100 horses:
 - Number of progeny
 - EBV
 - Accuracy of EBV

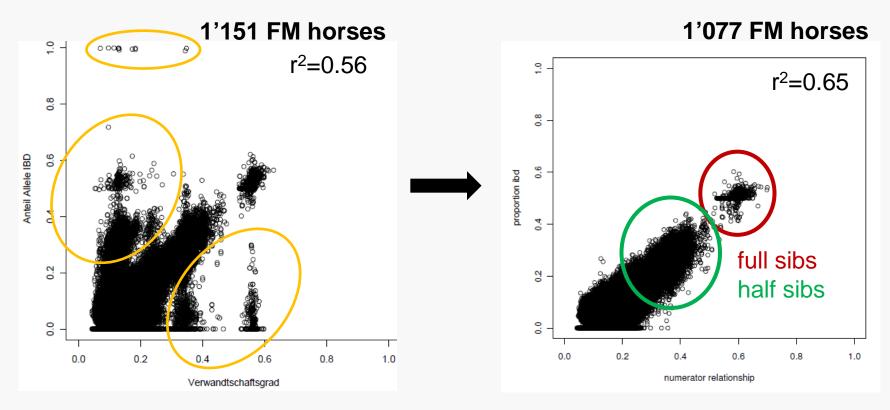
→214 stallions & 886 mares, born between 1975 and 2008

Material & selection of horses

- Genotyping with the Illumina Equine SNP50k beadchip.
- 54'602 genotypes for 1'151 FM horses
- Data of ~ 70 phenotypes:
 - 43 traits out of breeding program
 - ~ 30 traits

(e.g. health traits, coat colour, vices)

Conformation	28
Performance	12
(riding & driving)	
White spotting	3

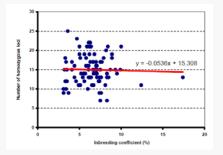

Data preparation

PLINK (v1.07, Purcell et al. 2007):

- Of 1'151 horses
 - 48 excluded due to sample duplication.
 - 10 removed because genotyping failed in more than 10% of the SNPs.
 - 16 excluded due to unresolved inconsistencies.
- Of 54'602 SNPs
 - 12'738 SNPs excluded due to MAF below 5%
 - 2'191 SNPs removed because more than 10% missing genotypes
 - 2'730 SNPs excluded due to deviation from HWE ($p \le 0.0001$)

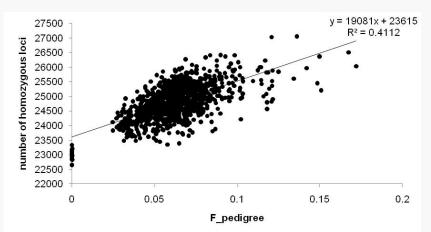
→ After quality control: 1'077 FM horses & 38'250 SNPs

Comparing pedigree and genomic information


Sample mixups & pedigree discrepancies

University of Applied Sciences
Swiss College of Agriculture SHL

Comparing microsatellite with SNP data


Glowatzki-Mullis et al. (2006):

- 107 FM horses
- 50 microsatellite loci
- No significant increase of the number of homozygous microsatellite loci with increasing inbreeding coefficients

Hasler et al. (2011):

- 1'077 FM horses
- 38'250 SNPs
- Increasing number of homozygous SNP loci with increasing inbreeding coefficient

Linkage disequilibrium (LD) & effective population size (N_e)

- LD measured as r² showed decreasing trend with increasing distance between SNPs.
- For marker pairs 0-0.05 Mb apart, average r² over all autosomes was 0.35.
- N_e = measure of genetic diversity

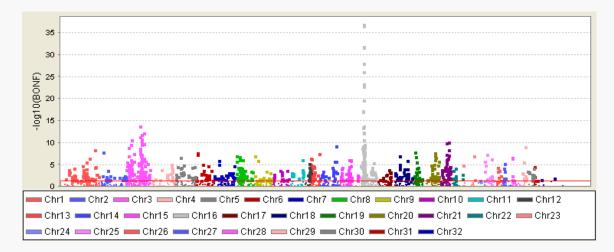
 \rightarrow assessed using information coming from LD of SNPs

• According to Hill (1981):

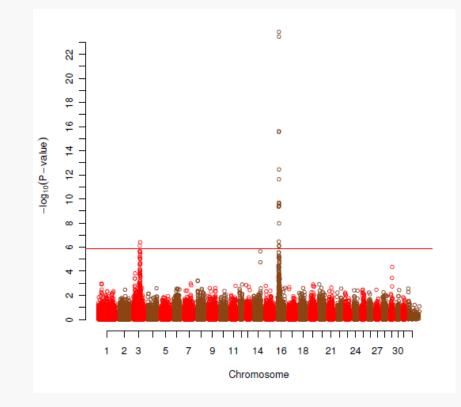
$$E(r^2) = \frac{1}{(1+4N_ec)} + \frac{1}{n}$$

Effective population size (N_e)

- N_e showed a decreasing trend over the last 2'000 generations
- Average recent N_e depending on sample size:
 - Corrected for restricted sample size: 23 126
 - Not corrected for restricted sample size: 13 107
- Recent N_e based on pedigree data: 80 102


Mapping traits - white markings

Photos: Archives Haras national


PLINK (v1.07, Purcell et al. 2007):

Quantative association analysis for white markings head

Mapping traits - white markings

Mixed-model approach function "mmscore" using Rpackage GenABEL (Aulchenko et al. 2007)

Estimation of genomic breeding values

- First results for conformation type and white markings head
- Bayes B using GenSel (Fernando and Garrick)

	Conformation type (h ² =0.27)		White markings head (h ² =0.69)	
	BayesBC0.2	BayesBC0.2	BayesBC0.2	BayesBC0.2
PROBFIXED	corr(ghat,y_dereg)	corr(ghat,y_ZP)	corr(ghat,y_dereg)	corr(ghat,y_ZP)
0.5	0.1497	0.5048	0.5705	0.7415
0.95	0.1185	0.4555	0.5704	0.7405
0.99	0.1012	0.4243	0.5687	0.7349

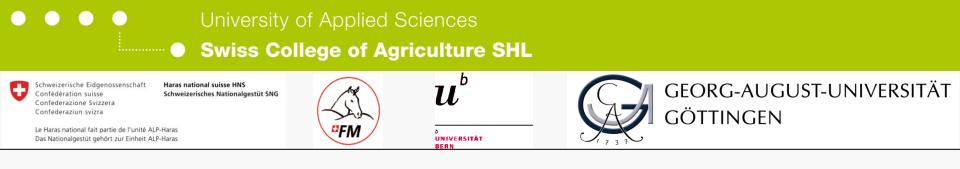
- Accuracy for actually best correlations (Hayes et al. 2009)
 - Conformation type: 0.47
 - White markings head: 0.88

Conclusion

- First experiences showed, that further processing of genotypes requires a very accurate management of samples.
- The SNP data enables the detection of pedigree inconsistencies and the deduction of relationships between individuals.
- The SNP data enables to map different traits.

Conclusion

- Due to first results, genomic breeding value estimation seems to be feasible and valuable in the Franches-Montagnes horse breed.
- Open questions:


Acceptance?

Implementation?

Consequences for the current breeding programme?

Dependency on technology?

Dependency on one company?

Many thanks for the collaboration...

- Institute of Genetics, University of Bern, Switzerland
- Animal Genetics and Equine Science Group, Swiss College of Agriculture, Zollikofen, Switzerland
- Animal Breeding and Genetics Group, Georg-August-University of Göttingen, Germany
- Swiss National Stud Farm, Avenches, Switzerland
- Swiss Franches-Montagnes Horse Breeders' Federation, Avenches, Switzerland
- Working group Swiss Cattle Breeders, Zollikofen, Switzerland
- agn Genetics GmbH, Davos, Switzerland
- ... and for funding: Swiss Federal Office for Agriculture

Stiftung Sur-Ia-Croix

University of Applied Sciences
Swiss College of Agriculture SHL

Thank you for your attention!

Foto: M. Rindlisbacher

The 1'077 genotyped FM horses

Using CFC (Sargolzaei et al. 2006) to analyse pedigree data:

- Average inbreeding coefficient: 6.22%
- Average numerator relationship:14.22%
- Average pedigree completeness index (10G): 97.8%

 Horses are direct descendants from 208 sires and 883 dams