

Heat stress in farrowing sows under piglet-friendly thermal environments

Jens Malmkvist & Lene J. Pedersen Dept. of Animal Science Aarhus University Denmark

Abstract page 165

Stress in farrrowing sows kept under a piglet-friendly thermal environment

- I. Why?
- II. What is a piglet-friendly thermal environment? (study 1)
- III. Preferences of farrowing sows (study 2)
- IV. Effects of floor heating on the sow
 a. Fully heated pen (study 3)
 b. Heated pen with colder zones

(study 4)

V. Conclusion

- Not a traditional "disease model"
- Stress in farrowing sows

- I. Why?
- Production economics, Animal welfare
- Piglet mortality 20-24 % of piglets born

• EU legislaton, 2013

Early piglet mortality

Hypoxia during delivery

Hypothermia

Insufficient intake of colostrum

Crushing by the sow

Early piglet mortality

Hypoxia during delivery

Hypothermia

Insufficient intake of colostrum

Crushing by the sow

Stress in the sow

- Stress in farrowing sows kept under a piglet-friendly thermal environment
- Stress responses

 behaviour
 thermoregulation
 HPA-axis hormones
 farrowing problems

piglet vitality and survial

Stress in farrowing sows kept under a piglet-friendly thermal environment

Stress in farrowing sows kept under a piglet-friendly thermal environment

II. What is a piglet-friendly thermal environment

- Temperatures 18-23 °C recommended -avoid thermal stress in sows -optimize feed intake/lactation
- Neonate piglets' thermoneutral zone: ca. 34 °C

Piglet rectal temperature

Piglet rectal temperature

Piglet-friendly thermal environment

In farrowing pens -heated piglet area away from sow?

 Not used in early period when the risk of hypothermia is high

• The piglets prefer to rest at the sow udder the first 2 days postpartum

(Herpin et al., 2001; Hrupka et al., 2000; Houbak et al., 2006; Vasdal et al., 2010) ₁₀ Piglet-friendly thermal environment

Pen floor heating? 33-34 °C at the time of birth

> Study 1: Malmkvist et al., 2006. Appl. Anim. Behav. Sci. 99.

Floor heating: piglet temperature

12

Floor heating: Piglets' first suckling

Piglet-friendly thermal environment

Pen floor heating 33-34 °C at the time of birth

- Favourable for piglets
- -re-gaining normal rectal temperature -quicker initiation of suckling -increased survival of piglets (1.0 piglet/litter)

(Malmkvist et al., 2006)

Piglet-friendly thermal environment

Pen floor heating 33-34 °C at the time of birth

• Piglets

+ production economics + animal welfare

The farrowing sow?

 recommended temp. 18-23 °C
 floor heating as a stressor

• Heat as an stressor

Cooling (17 °C) to sows in tropics: Increase feed intake, reduce gestational weight loss, litter weight gain (Silva et al., 2009)

Room temperatures at 25 °C or above: Marked reduction in daily feed intake (Quinou and Noblet, 1999)

III. Preferences of farrowing sows

Sows chose 34-35 °C heated floor at delivery/first days postpartum

(Phillips et al., 2000)

Study 2: Pedersen et al., 2007. Appl. Anim. Behav. Sci. 103.

Preferences of farrowing sows

Heat 34 °C, n = 13

Control - 20 °C, n = 13

Preferences of farrowing sows

No preference/avoidance around farrowing
Piglets gradually increased the use of heated floor after 1-2 days postpartum; the sow followed

(Pedersen et al., 2007)

IV. Floor heating: Effects on the farrowing sow a. Fully heated pen (study 3)

Study 3: Malmkvist et al., 2009. J. Anim. Sci. 87

- Control Unheated pen floor
- (n = 14) 21.1 ± 1.4 °C
- Heated Heated pen floor (n = 14) $33.5 \pm 1.6 \,^{\circ}\text{C}$

2nd parity LY sows (n = 28) Room temperature: 21.2 ± 0.8 °C Relative humidity: 47.6 ± 8.1 %

N.S. treatment effects on

- Sow behaviuor
- Duration of farrowing
- Interval between piglets
- Number of piglets at birth (liveborn 15-16, 10 % stillborn)
- Piglet weight gain

• Lactate in umbilical cord: indicator of hypoxia

- Lactate in umbilical cord: indicator of hypoxia
 - N.S. treatment effect (P = 0.57)
 - Heated: 4.6 (0.23) vs. Control: 4.9 (0.23)

 No farrowing problems induced by heated floor around farrowing (Malmkvist et al., 2006)

• Immunological stress indicators:

Daily, gestation day 110 until 6 days after farrowing

N.S. treatment effects

Damgaard et al., 2009. Res. Vet. Sci. 86. 29

- ACTH, Cortisol, and Oxytocin: hourly,
- -8 to + 24 h relative birth of first piglet

(study 3: Malmkvist et al., 2009)

31

• Floor heating (33.5 °C): acute stressor for sows around farrowing

-elevated HPA-axis hormones

-no concurrent changes in plasma oxytocin, farrowing problems or sow behaviuor

(Malmkvist et al., 2009)

Positive

• Stressor

Tested at room temperature 21°C Fully heated floor = inescapable

IV. Floor heating: Effects on the farrowing sow Heated pen with colder zones, 15-25 °C (study 4)

Study 4: Malmkvist et al., under review

Floor heating: Effects on the farrowing sow Room temperature 15, 20, 25 °C (n = 72 sows)

Heated floor + unheated slatted pen floor 35 °C (equilibrium with room temp.)

Nest-building behaviour $15 > 20, 25 \circ C, P = 0.015$

Time relative to birth of first piglet, h

No treatment effects on

- duration of parturition
- interbirth-intervals
- umbilical cord lactate
- litter size until weaning
- development in body weight in sow/litter

Daily water consumption $25 > 15, 20 \circ C, P < 0.001$

Time in relation to farrowing, days

Effects on temperature on the farrowing sow

Prunier et al.,1997

- -voluntary feed intake stoppate at 4 days at 27 °C -higher gestational control of the loss at 27 °C
- -suggested strategy to reduce heat production

Present study:

-total feed intake the same 15, 20 and 25 °C -no gestational weightees across temperature -sows appear not lead tolerable

Effects of housing system on feed intake and production

Danish herd study Loose-housed (n=284) vs. crated sows (n = 288)

Loose-housed: Sow feed-intake higher Loose housed: Piglet weaning weight increased (+4%)

No difference in weaned piglets (10.4/litter) or weaning age 24 days

(Moustsen and Poulsen, 2004)

Thermoregulatory behaviour

• Unheated slatted used for lying increase with increasing temperature

Farrowing and nesting site?

on heated solid floor 15 °C: 82 %

20 °C: 93 % 25 °C: 95%

N.S. difference

Positive

• Succesfull thermoregulation

Tested at room temperature 15-25°C, floor heating 34 °C around farrowing. Partly heated floor = colder pen zones

V. Conclusion

 Floor heating: Favourable for neonate piglets born in indoor stables at 20 °C (piglets close to sow day 0-2)

 No sow avoidance/preference at farrowing.
 Day 1-2 postpartum: sow lying more on heated floor

V. Conclusion

- Inescapble floor heating around farrowing = thermal stressor
- Behavioural thermoregulation: high thermal tolerance in sows tested at room temperatures 15-25 °C

Thank you for your attention!

Jens Malmkvist & Lene J. Pedersen Dept. of Animal Science Aarhus University Denmark

Abstract page 165