
Faculty of Agricultural and Nutritional Science

Christian-Albrechts-University Kiel Institute of Animal Breeding and Husbandry

Characterisation of the contact network in the pig supply chain

Kathrin Büttner, Joachim Krieter and Imke Traulsen

Institute of Animal Breeding and Husbandry Christian-Albrechts-University, Kiel

62nd Annual EAAP Meeting Stavanger, Norway 29th August to 2nd September 2011

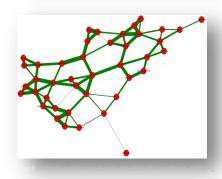
Introduction

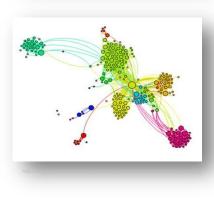
• Networks – parts of our everyday life

- Underground networks
- Power grid
- Social networks in the WWW

Network analysis

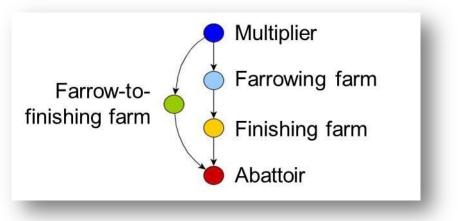
- Characterisation of network structures
- Detection of central or important nodes

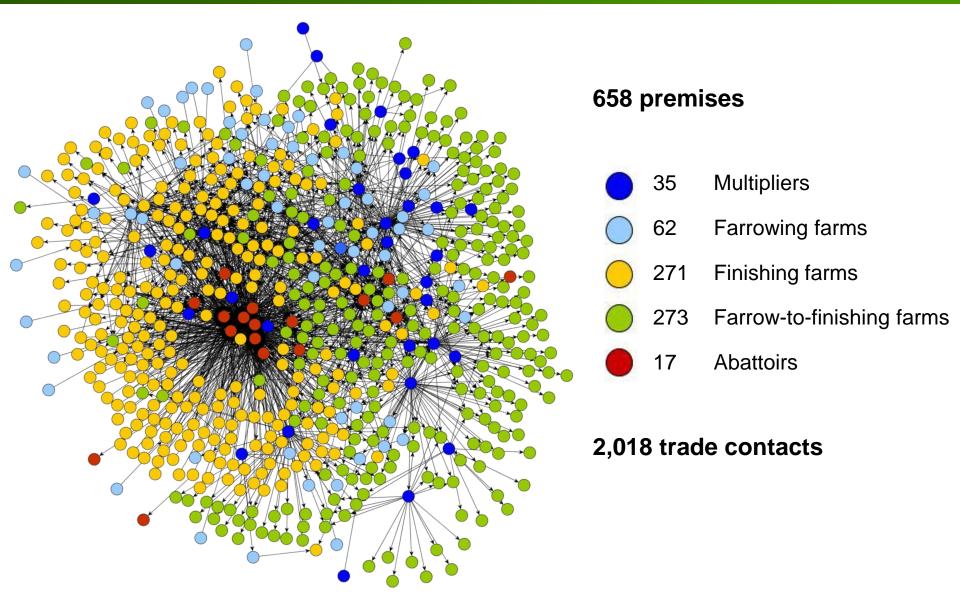

• New approach to the control of animal diseases


- Cost aspects \rightarrow extensive economic losses
- Ethical aspects \rightarrow preventive culling of healthy animals

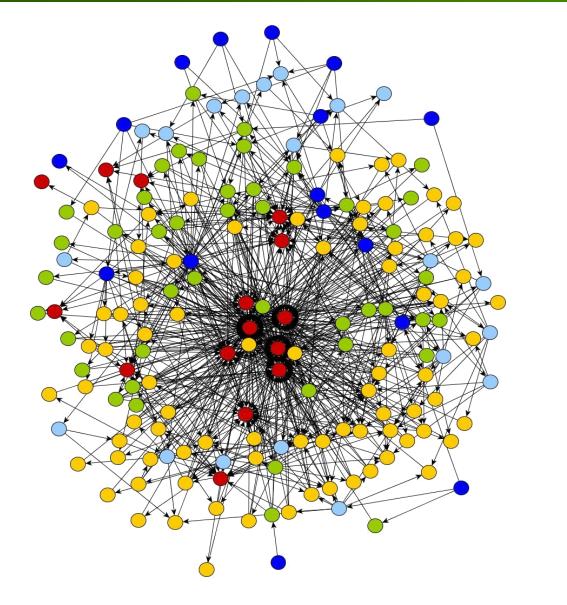
Project aims

- Characterisation of the network topology
- Better prediction of disease transmission
- Optimisation of control strategies

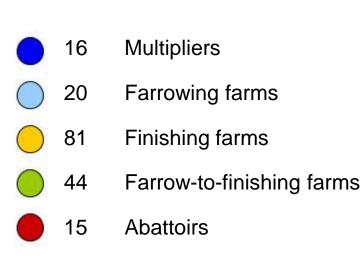



- Real network of the pork supply chain from a producer community in Northern Germany
- Observation period
 - → 01/06/2006 31/05/2009
- Transported livestock
 - \rightarrow Piglets, fattening pigs, sows, boars

- Static network analysis
 - \rightarrow Aggregation of repeated trade connections to a single one



Data basis – Original network



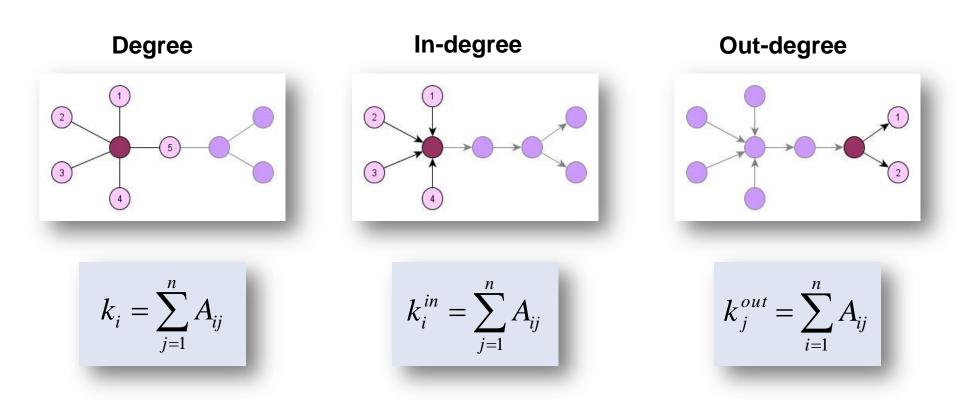
Data basis – Adapted network

176 premises

793 trade contacts

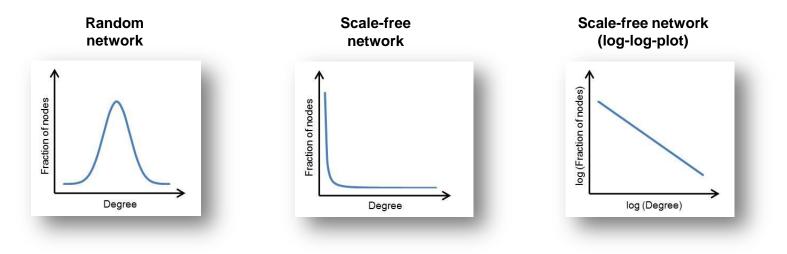
"Which are the most central or important nodes of a network?"

Degree centrality

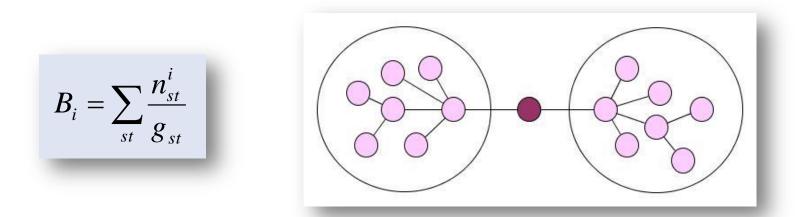

Betweenness centrality

Closeness centrality

Centrality measures – Degree centrality

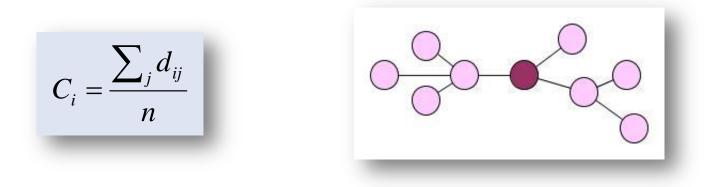

- Definition
 - The degree of a node is the number of connected edges
 - The in-degree of a node is the number of ingoing edges
 - The out-degree of a node is the number of outgoing edges

Centrality measures – Degree centrality


- Degree Distribution
 - P(k) Probability that a randomly chosen node has degree k

- Power-law degree distribution
 - \rightarrow P(k) ~ k^{- α}
 - \rightarrow Highly right-skewed
 - \rightarrow A lot of premises with a low degree centrality
 - \rightarrow Few premises with a high degree centrality

- Definition
 - Betweenness centrality measures the extent to which a node lies on paths between other nodes
 - Number of geodesic or shortest paths a node lies on

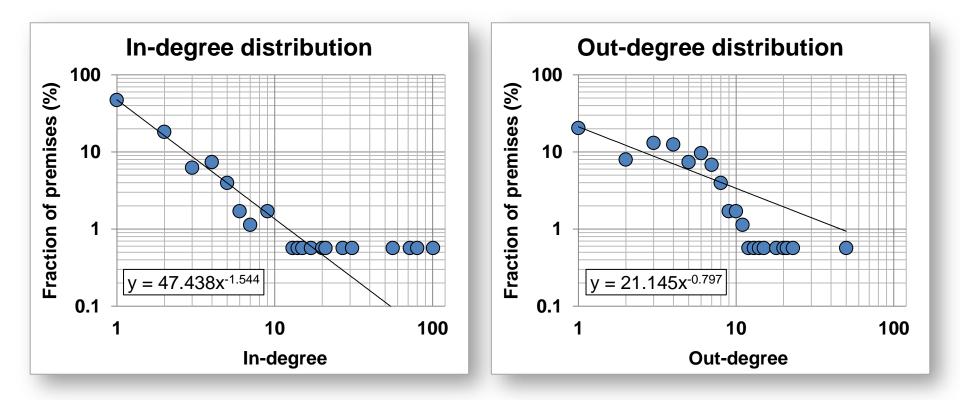


- Betweenness centrality distribution
 - Tendency to right-skewed distributions in most real networks
 - Power-law distribution

Centrality measures – Closeness centrality

- Definition
 - Closeness centrality measures the mean geodesic or shortest distance from a node to all other reachable nodes

- Closeness centrality distribution
 - Small dynamic range from largest to smallest value
 - No long tail to the distribution
 - Approximate normal distribution


25th percentile, median and 75th percentile of the in-degree and the out-degree for the different farm types

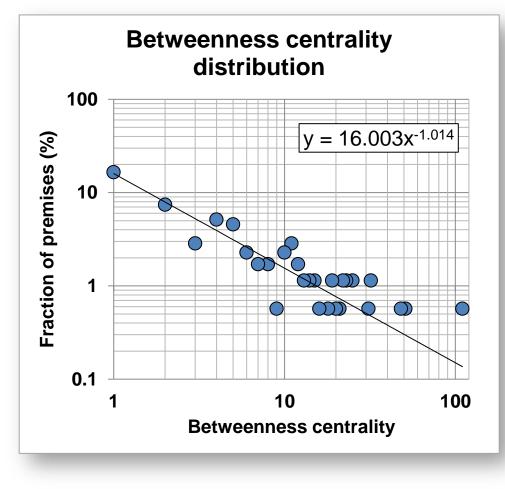
Premise type	n	In-degree			Out-degree			
		25 th Pctl	Median	75 th Pctl	25 th Pctl	Median	75 th Pctl	
Multiplier	16	0	0	1	3	5	10	
Farrowing farm	20	1	2	3	1	3	8	
Finishing farm	81	1	2	3	2	3	5	
Farrow-to-finishing farm	44	1	1	2	2	5	7	
Abattoir	15	6	20	56	0	0	0	
Total	176	1	1	3	1	4	6	

→ Different types of premises reveal different degrees due to their position in the network

Distributions of the in-degree and the out-degree

 \rightarrow Approximate power-law degree distribution

25th percentile, median, 75th percentile, minimum and maximum of the betweenness centrality for the different farm types

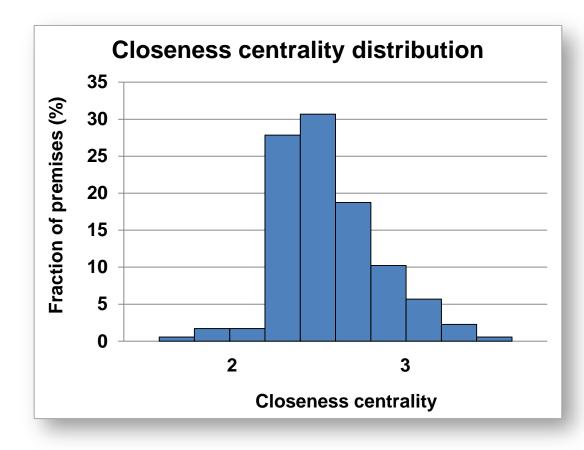

Premise type	n	Betweenness centrality					
		25 th Pctl	Median	75 th Pctl	Min	Мах	
Multiplier	16	0	0	24.2	0	110.2	
Farrowing farm	20	3.6	6.2	12.8	0.2	50.7	
Finishing farm	81	0.3	1.3	4.1	0	48.2	
Farrow-to-finishing farm	44	0.2	2.3	10.9	0	25.4	
Abattoir	15	0	0	0	0	0	
Total	176	0.1	1.2	6.4	0	110.2	

→ Different types of premises reveal various betweenness centralities due to their position in the network

Results – Betweenness centrality

Distribution of the betweenness centrality

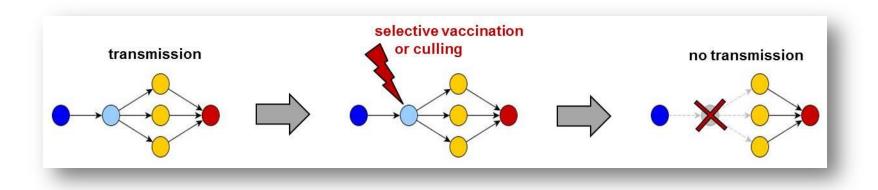
- Approximate power-law distribution
 - A lot of premises with low betweenness centrality
 - Few premises with high betweenness centrality


25th percentile, median, 75th percentile, minimum and maximum of the betweenness centrality for the different farm types

Premise type	n	Closeness centrality					
		25 th Pctl	Median	75 th Pctl	Min	Мах	
Multiplier	16	2.3	2.7	2.9	1.8	3.2	
Farrowing farm	20	2.6	2.7	2.8	2.5	2.9	
Finishing farm	81	2.2	2.3	2.4	2.0	3.2	
Farrow-to-finishing farm	44	2.1	2.2	2.3	1.9	2.6	
Abattoir	15	1.9	2.4	2.8	1.5	3.3	
Total	176	2.1	2.3	2.5	1.5	3.3	

 \rightarrow All farm types have nearly the same closeness centrality

Distribution of the closeness centrality



- Small range 1.5 3.3
- Mean 2.3 ± 0.3

Outlook – Network resilience

- Scale-free networks
 - Highly resistant concerning the random removal of nodes
 - Highly vulnerable concerning the removal of the most central nodes of the network

- Interruption of the chain of infection
- Prevention of further disease spread

Conclusion

- Network analysis Substantial tool for characterising contact structures
- Only a small range and low values of the closeness centrality
- Different types of premises reveal various degrees and betweenness centralities reflecting their position in the pig supply chain
- Degree and betweenness centrality distribution show scale-free characteristics
- First step to interrupt the chain of infection and to prevent further disease spread

Thank you for your attention!

This project is kindly financed by the DFG.