Combining Survival Analysis and a Linear Animal Model,

to estimate genetic parameters for social effects on survival in layers

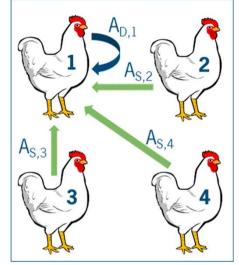
Esther Ellen¹, Vincent Ducrocq², Bart Ducro¹, Roel Veerkamp³ and Piter Bijma¹

¹Animal breeding and Genomics Centre, Wageningen University, The Netherlands ² Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, The Netherlands ³ UMR, INRA, France

Substantial mortality due to cannibalism

Picture provided by Bill Muir

- Currently beak-trimming is used as a "solution"
- Genetic solution is desired



The Genetic Model

Previous Results:

originates from social effects.

But: from Linear Models

The Phenotype

$$P_i = A_{D,i} + \sum_{\text{group mates}} A_{S,j} + e$$

Parameters of interest:

Direct genetic variance: $\sigma_{A_D}^2$ Direct-social covariance $\sigma_{A_{DS}}$ Social genetic variance: $\sigma_{A_s}^2$ Total heritable variance: $\sigma_{A_T}^2 = \sigma_{A_D}^2 + 6\sigma_{A_{DS}} + 9\sigma_{A_S}^2$

The Total Breeding Value

$$A_{T,i} = A_{D,i} + 3A_{S,i}$$

Genetic analysis of survival time in laying hens

- Issues:
 - Censoring: Many animals still alive at end of study period
 - Social genetic effects: Survival time depends on group mates
- Use survival analysis (survival kit (Ducrocq and Sölkner, 1998))
- Problem: Social effects cannot (yet?) be included
- <u>Solution</u>: Combine survival analysis and a linear animal model including social effects
 - \rightarrow two-step approach

- To estimate direct and social genetic parameters for survival time in cannibalistic layers
- Using a two-step approach (2STEP)
- Compare 2STEP with a 1-step linear animal model (LAM)

Material

- Survival data from ISA (Hendrix Genetics)
- 2 purebred White Leghorn layer lines: W1 and WB
- ~13,000 hens
- 4 birds/cage
- Randomly composed cages
- Intact beaks
- **Trait:** survival days

Survival days = number of days from start of laying till either death or end of study (max = 447 days)

Methods – 2STEP approach

Step 1: Calculate pseudo-records using survival analysis

- "Record" on the hazard scale
- Cox animal model
- Fixed effects:
 - Laying house x row x level
 - Effect of back neighbours

• Pseudo record (
$$y_i^*$$
): $y_i^* = \frac{\delta_i}{\omega_i} + a_i - 1$

- δ_i = censoring code of individual i (1 = uncensored; 0 = censored)
- a_i = direct breeding value of individual i
- ω_i = weight for individual i

Step 2: Estimate genetic parameters with linear model

$$\mathbf{y}^* = \mathbf{Z}_{\mathrm{D}} \mathbf{a}_{\mathrm{D}} + \mathbf{Z}_{\mathrm{S}} \mathbf{a}_{\mathrm{S}} + \mathbf{e} \quad \text{(Muir, 2005)}$$

- y * = vector of pseudo-records
- **a**_D = direct breeding values
- **a**_s = social breeding values

• **e** = vector of residuals, where
$$Var(e_i) = \frac{1}{\omega_i}\sigma_e^2$$

Fit linear model directly to observed survival days

$$\mathbf{y} = \mathbf{Z}_{\mathrm{D}} \mathbf{a}_{\mathrm{D}} + \mathbf{Z}_{\mathrm{S}} \mathbf{a}_{\mathrm{S}} + \mathbf{e} \quad \text{(Muir, 2005)}$$

- **y** = vector of observed survival days
- **a**_D = direct breeding values
- **a**_s = social breeding values
- e = residuals

Comparison of Methods: Cross-validation

- 20% of phenotypes were set to missing
- 5 subsets
- Missing phenotypes were predicted: $\hat{P}_i = \hat{A}_{D,i} + \sum \hat{A}_{S,j}$
- Validation is difficult:
 - Scale difference (survival days vs. hazard scale)
 - 50-70% of data were censored no observed phenotype
- 2 approaches to compare 2STEP and LAM:
 - Rank-correlation between observed and predicted phenotypes
 - Random rank for censored records
 - "Response to selection" approach:
 - Observed difference between 25% best and worst predicted individuals

group mates

Both methods yielded significant social genetic variance

- Estimates are not comparable due to scale difference (not shown)
- Both methods yielded a similar relative contribution of social effects to total genetic variance
 - ~ 50% for line W1
 - ~ 60% for line WB

Results – Cross-validation: rank-correlation

	Rank Corr		
Line	2STEP	LAM	2STEP-LAM
W1	0.149 ± 0.011	0.144 ± 0.010	0.954 ± 0.003
WB	0.174 ± 0.020	0.170 ± 0.020	0.962 ± 0.004

Both method predict missing phenotypes equally well

Predicted phenotypes of both methods were highly correlated

Results - Cross validation: "response to selection"

	W1		WB	
	2STEP	LAM	2STEP	LAM
Mean	354 ± 2		326 ± 2	
Predicted best	377 ± 3	377 ± 3	359 ± 2	357 ± 3
Predicted worst	327 ± 2	327 ± 3	292 ± 6	290 ± 6
Difference	50	50	67	67

Both methods yield the same "response to selection"

Discussion

- Surprise: No difference between 2STEP and LAM
 - Reason: All individuals were censored at same time
 - With variation in censoring time, 2STEP was superior
- Assumptions
 - In the cross-validation, observed phenotypes were precorrected for fixed effects using LAM
 - Rank-correlation approach assumed random ranks for censored records
 - But "response to selection" approach had no assumptions
- Conclusion: 2STEP-approach is useful when censoring time varies

Combining Survival Analysis and a Linear Animal Model,

to estimate genetic parameters for social effects on survival in layers

Esther Ellen¹, Vincent Ducrocq², Bart Ducro¹, Roel Veerkamp³ and Piter Bijma¹

¹Animal breeding and Genomics Centre, Wageningen University, The Netherlands ² Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, The Netherlands ³ UMR, INRA, France

