

Prediction of breed composition in an admixed cattle population

Frkonja Anamarija, Gredler Birgit, Schnyder Urs, Curik Ino, Sölkner Johann

EAAP, Stavanger, August 31th

Session 30/7

Introduction

What are the proportions of particular breeds in this animal?

Introduction

Levels of crossbreding

- Methods implemented for predicting levels of admixture:
 - HMM methods
 - Genomic selection methods

Aim

- Compare the performance of
 - HMM (STRUCTURE software)
 - Methods used in genomic selection:

Bayes B

partial least squares regression (PLSR)

least absolute shrinkage and selection operator (LASSO)

 Results were correlated with pedigree based admixture calculations

Data

- Swiss Fleckvieh genotyped Illumina 54k-Chip
- Cross/composite: Simmental and Red Holstein Friesian
- Genotypes of founder animals- not available

Selection of SNPs

- Full set of 40492 SNPs
- Subsets:

50% (20246), 20% (8098), 10% (4049), 5% (2024) 1% (404) evenly distributed SNPs

Selection of SNPs

- Fst chosen SNPs
 - > 25% (5635 SNPs),
 - > 30% (3904 SNPs),
 - > 35% (2620 SNPs)
- 48 and 96 SNPs with the highest FsT

Selection of SNPs

- SNPs chromosomes: 1, 8, 15, 22 and 29
 Set of SNPs from chromosomes
 - 1 + 15 + 29

Results

 Correlations of results obtained with the listed methods and pedigree based calculations

Results of evenly spaced SNPs

- Full set of SNPs- similar performance of methods: ~ 0.97 (except LASSO 0.93)
- Evenly spaced SNPs down to 2024 SNPsresults not significantly different for STRUCTURE, PLSR, LASSO
- BayesB breaking point 4049 SNPs

Results of Fs⊤ and chromosome picked SNPs

- Fst chosen SNPs- results very similar to using the full set (except highest Fst 48, 96 SNPs)
- LASSO- no reliable results obtained
- Full sets of SNPs extracted from individual chromosomes- ~ 0.73
- STRUCTURE best performing method
- Combined set of 3 chromosomes ~ 0.85

Conclusion

- All methods except LASSO with full set of SNPs
 gave almost identical results
- FST chosen SNPs- results very similar to using the full set
- Using 96 and 48 SNPs with the highest FST, correlations with pedigree based admixture calculations dropped
- Particular chromosomes separately did not gave satisfactory results

Future research

 Admixture of particular regions on the chromosomes

Acknowledgements

 Swiss Fleckvieh genotypes were provided by swissherdbook cooperative

Thank you for your attention

Conclusion

- All methods except LASSO with full set of SNPs
 gave almost identical results
- FST chosen SNPs- results very similar to using the full set
- Using 96 and 48 SNPs with the highest FST, correlations with pedigree based admixture calculations dropped
- Particular chromosomes separately did not gave satisfactory results

Results

Prediction of breed composition in an admixed cattle population

Frkonja Anamarija, Gredler Birgit, Schnyder Urs, Curik Ino, Sölkner Johann

Number of SNPs	STRUCTURE	PLSR	BayesB (1% important SNPs assumed)	LASSO (96)
40.400	0.0700	0.0700	0.0746	
40492	_a 0.972 ^a	a ^{0.976^a}	_a 0.974 ^a	_a 0.934 ^b
20246	_a 0.971 ^a	_{ab} 0.968 ^a	_{ab} 0.972 ^a	_b 0.907 ^b
8098	_a 0.969 ^a	_{ab} 0.968 ^a	_{ab} 0.966 ^a	_b 0.907 ^b
4049	_a 0.969 ^a	_a 0.974 ^a	_b 0.961ª	_{ab} 0.920 ^b
3k (2694)	0.957	0.965	0.905	0.901
2024	_b 0.950 ^a	_{ab} 0.966 ^a	_c 0.890 ^b	_{cb} 0.892 ^b
404	b0.929ª	_b 0.955 ^b	_c 0.860 ^c	_c 0.847 ^c

F_{ST} subsets

5635 (F _{ST} > 0.25)	_a 0.97 ^a	_a 0.976 ^a	_{ab} 0.966 ^a	_a 0.934 ^b
3904 (F _{ST} > 0.30)	_a 0.971 ^a	_a 0.974 ^a	_{ab} 0.965 ^a	_a 0.934 ^b
2620 (F _{ST} > 0.35)	_a 0.969 ^a	_a 0.974 ^a	_{ac} 0.952 ^b	_a 0.934 ^b
1677 (F _{ST} > 0.40)	_a 0.968 ^a	_a 0.973 ^a	_c 0.949 ^b	_a 0.934 ^b
1028 (F _{ST} > 0.45)	_a 0.966 ^a	_{ab} 0.968 ^a	_b 0.967ª	_a 0.934 ^b
594 (F _{ST} > 0.50)	_a 0.961 ^a	_b 0.957 ^a	_{bc} 0.955 ^{ab}	_a 0.934 ^b
96 (F _{ST} > 0.623)	_b 0.924	_c 0.916	_d 0.926	0.918
48 (F _{ST} > 0.651)	_b 0.907	_c 0.903	_d 0.906	0.903

Chromosome subsets

1 (2115 SNP)	0.794	0.739	0.699	0.724
8 (1568 SNP)	0.716	0.711	0.690	0.701
15 (1077 SNP)	0.747	0.744	0.678	0.712
22 (586 SNP)	0.683	0.667	0.636	0.669
29 (657 SNP)	0.638	0.654	0.665	0.643
1/15/29 (3867 SNP)	0.878 a	0.892 a	0.863 a	0.766 b

Residuals (SNP based admixture – pedigree based admixture calculations) for pure animals represented as admixed using different methods

	Red Friesian		Simmental	
	mean	sd	mean	sd
STRUCTURE $F_{ST} = 0.30$	-0.070	0.043	0.030	0.027
STRUCTURE 2024 SNPs	-0.089	0.060	0.031	0.028
BayesB $F_{ST} = 0.30$	-0.030	0.049	0.010	0.034
BayesB 2024 SNPs	-0.055	0.056	0.019	0.045
LASSO $F_{ST} = 0.30$	-0.046	0.070	0.048	0.082
LASSO 2024 SNPs	-0.042	0.105	0.041	0.074
PLSR $F_{ST} = 0.30$	-0.025	0.041	0.004	0.029
PLSR 2024 SNPs	-0.050	0.052	0.019	0.038

 Pearson correlations of admixture based on pedigree and STRUCTURE and PLSR with different sets of pure animals in the training sets

• For sets of 10 animals each, 5 samples were run, numbers in brackets indicate the range of correlations

Number of pure animals per breed	STRUCTURE	PLSR
100	0.971	0.974
50	0.971	0.973
20	0.971	0.971
10	0.970 (0.9702-0.9704)	0.970 (0.969-0.971)