Rationale for estimating genealogical coancestry from molecular markers

Genetics Selection Evolution 2011, 43:27

Toro, M.A., García-Cortés, L.A., Legarra, A.

ETSIA UPM, Ciudad Universitaria 28040 Madrid, Spain. INIA, Ctra. Coruña Km 7.5 28040 Madrid. INRA, UR 631 SAGA, F-31326 Castanet Tolosan, France.

Molecular measures of similarity

1) Molecular coancestry

	Individual i	Individual j	$f_{M(i,j)}$
Locus 1	AA	ΑΑ	1
Locus 2	Bb	Bb	0.5
Locus 3	Сс	CC	0.5
•	•	•	•
•	•	•	•
Locus L	mm	MM	0

the probability that two alleles taken at random, one from each individual, are equal

2

In more formal terms if g_{ik} is the frequency (= gene content/2) of an allele (A, B,C,..) in individual i

	Individual i	Individual j	\boldsymbol{g}_{ik}	g_{jk}
Locus 1	ΑΑ	ΑΑ	1	1
Locus 2	Bb	Bb	0.5	0.5
Locus 3	Сс	CC	0.5	1
•	•	•	•	•
•	•	•	•	•
Locus L	mm	MM	0	0

$$f_{M(i,j)} = \frac{1}{L} \sum_{k} g_{ik} g_{jk} + (1 - g_{ik})(1 - g_{jk})$$

2) Molecular covariance

If g_{ik} is the frequency of allele BIG (A, B,C,..) in individual i

There are many other measures of molecular similarity Why to choose these ones?

Let consider two individuals

	Individual i	Individual j	
Locus 1	AA	Aa	
Locus 2	BB	Bb	
Locus 3	CC	Сс	
•	•	•	
	mm	Mm	
Locus L	nn	Nn	
	00	Оо	
Molecular self-coancestry	1.00	0.50	Inbreeding
Molecular variance	0.25	0.00	Genetic drift

Equivalences

- Malécot assumes we have 2N founder alleles
- Then we genotype individual 9
- In this case,
 - molecular coancestry = Malécot
 IBD coancestry
- However SNPs have 2 alleles
 - How are then these equivalences?

With SNPs...

- Let us imagine that to each one of the 2M founder alleles we assign at random a tag saying if the allele is A or a with probability p and q=1p
- Then we genotype 9
- Can we say which ancestral allele (1 to 8) inherited 9?

with SNPs...

- The molecular coancestry between two individuals *i* and *j* will be
 - probability that two alleles are equal (alike in state) f_{Mij} ,
 - either because they have become identical by descent or
 - either because they are not identical by descent but equal in the base population.

Doing the algebra (Cockerham, 1969) ...

• it can be shown that, on expectation,

- with allelic frequency *p* in the base population!!
- But allelic frequencies are typically variable...
 - Can be thought of as coming from a random (beta) distribution

Variation of allelic frequencies

- it can be shown that, on expectation across the distribution of allelic frequencies, $E(Cov_{Mij}) = Var(p) + f_{ij}(\overline{p} \,\overline{q} - Var(p))$ $E(f_{Mij}) = \overline{p}^2 + \overline{q}^2 + 2Var(p) + 2f_{ij}(\overline{p} \,\overline{q} - Var(p))$
- Reversing these formulae, estimators of coancestry f_{ij} can be easily derived

Compare with VanRaden's G's Not averaged withinindividual but (possibly) within loci 1st $\implies \hat{f}_{VR1ij} = \frac{1}{n} \frac{\sum (g_{ik} - p_k) (g_{jk} - p_k)}{\sum p_k (1 - p_k)}$ allelic frequencies are « fixed » (not random) 2nd $\hat{f}_{VR2ij} = \frac{1}{n} \sum \frac{(g_{ik} - p_k)(g_{jk} - p_k)}{p_k(1 - p_k)}$ numerically unstable if p~0

Testing

 Simulation (drift): 20 individuals x 10 generations, 10000 SNPs

- Data: 1827 Holstein bulls (~6 generations), 51325
 SNP
 - MAF >0.0000....

Quality of estimators: simulated drift $f_{ii} = a + b\hat{f}_{ii}$

	Ours	VanRaden's	
Intercept	0.09	0.09	
Slope	0.90	0.90	
R ²	0.99	0.58	
Alleviate drift (50 x 4 generations) $R^2 = 0.96$			

Drift creates:

estimation of allelic frequencies difficult **bias** (understimates relationships) **slope** (inflate them)

Quality of estimators: Real data

$$f_{ij} = a + b\hat{f}_{ij}$$

Pedigree relationships were taken as reference

	Ours	VanRaden's 1	VanRaden's 2
Intercept	0.04	0.04	0.04
Slope	0.45	0.80	0.28
R ²	0.45	0.76	0.23
Within-individual averaging Numerical instability gives loses information lots of problems			

Conclusions

- Relationships between IBD and molecular relationships are easily established
 - Building estimators is thus simple
 - Need to consider p's as random
- Lack of knowledge of allelic frequencies is a problem
 - But not for practical purposes

Acknowledgements

- ANR projects Amasgen, Rules&Tools; Apisgene
- Toulouse bioinformatics platform (bioinfo.genotoul.fr)
- GENOMIA funding: www.poctefa.eu

Measurements of relationships

- Coancestry r_{xy} (Malécot coefficient, « kinship »):
 - probability (IBD)
 - But also: excess from H-W equilibrium,
 « correlation between uniting gametes » (Wright;
 can be negative !!)
- Remember: IBD is a proxy to the true (unknown) IBS at the gene

