Characterization of Linkage disequilibrium in a Danish, Swedish and Finnish Red Breed Cattle Population

Elisenda Rius-Vilarrasa¹, J. Vilkki², I. Strandén², N. Schulman², T. Iso-Touru², B. Guldbrandtsen³, E. Strandberg¹, M.S. Lund³ and W.F. Fikse¹

> ¹Swedish University of Agricultural Sciences, Uppsala, Sweden ²MTT Agrifood Research Finland, Jokioinen, Finland ³Aarhus University, Tjele, Denmark

> > 11th EAAP, 31st August 2011

Stavanger, Norway

Acknowledgments

The Swedish Farmers' Foundation for Agricultural Research (SLF)

Nordic Genetic Evaluation

Svensk Mjölk

Viking Genetics

Swedish University of Agricultural science

Danish Directorate for Food, Fisheries and Agri. Business

Aarhus University, Denmark

MTT Agrifood Research Finland

Background

- Multi-breed genomic predictions in the Nordic Red dairy cattle populations, are influenced by the genetic ties between breeds.
- Linkage disequilibrium and persistency of marker-QTL phase might differ between populations.
- This can compromise the effectiveness of pooling genetic data together in a multi-breed genomic prediction analysis.
- Assessing the differences in the patterns of LD between populations can contribute to:
 - The information on the marker density requirements (de Roos et al. 2008)
 - The optimization of the genomic prediction models for multi-breed reference populations.

Aims

4

Explore linkage disequilibrium (LD) and persistency of phase

Estimate the effective population size

Materials and Methods

Genotypes

- Illumina 50K SNP array \rightarrow 38.647 SNPs after editing (MAF>5%)
- 6,107 bulls (RDM = 21%, SRB = 32% and FAY = 47%)
- LD measures (Lewontin, 1964; Hill & Robertson 1968)

$$r^{2} = \frac{D^{2}}{p_{A1}p_{A2}p_{B1}p_{B2}} \qquad r = \frac{D}{\sqrt{p_{A1}p_{A2}p_{B1}p_{B2}}}$$

- $D = p_{A1B1}p_{A2B2} p_{A1B2}p_{A2B1}$ and p_{A1} , p_{A2} , p_{B1} and p_{B2} are the frequencies of alleles A1, A2, B1 and B2, respectively.
- varLD program (Ong and Teo 2010, Gen. Res.)

VarLD program

- Identify genomic regions with LD difference between populations
 - Calculate the extent of LD (r²) between every pair of SNP of pre-defined sliding windows → LD matrix for each window/population.
 - varLD scores: comparing the extent of departures between the eigenvalues of the two matrix
 - The magnitude of the varLD scores as a measure of dissimilarity between populations

varLD program

7

 Candidate regions displaying significant LD difference between populations are obtained by truncation of the distribution of scores at 95% and 99% percentiles.

Chromosome 1 RDM-SRB 0.4 95% 99% 0.3 0.2 0.1 0.0 RDM-FAY Standarized score Π4 0.3 0.2 0.1 0.0 SRB-FAY 0.4 0.3 0.2 0.1 0.0 -2 0 2 Physical position (Mb)

SLU

Effective population size: Ne

8

• Equations (Hill W. 1975, Hayes et al. 2003; Goddard et al. 2006)

$$E(r^{2}) = 1 / (4Ne_{t}c+2) \qquad Ne_{t} = (4\overline{c})^{-1} \left[(\overline{r_{c}}^{2})^{-1} - 2 \right]$$

- **c** is the marker distance, assuming that $1Mb \approx 1cM$
- $-r^2$ is the average LD at different marker distances
- Ne_t is the effective population size, T generations ago, where T = 1/(2c)

Results₍₁₎ - Average r² across marker distance

Distance (Kb)

Useful LD of 0.20 \rightarrow 54,000 SNPs (SRB/FAY) and 75,000 SNPs (RDM) to achieve accuracies from genomic prediction models of \geq .85 (Meuwissen et al. 2001)

Results₍₂₎ – Average r² per chromosome

8

Chromosomes

Results₍₃₎ – Patterns of LD between populations

SLU

Results₍₃₎ – Patterns of LD between populations

10

QTL Milk yield (FAY) (*Viitala S.M et al. 2003, J Dairy Sci.*)

SLU

Results₍₄₎ – Patterns of LD between populations

Chromosome 6

11

Top 95% percentil Top 99% percentil

ò

QTLs: Somatic cell count (NRF) (Klungland H. et al. 2001 Mamm. Genome)

Milk protein % (FAY) (Velmala R.J et al. 1999, Animal Genetics)

Results₍₅₎ – Patterns of LD between populations

Chromosome 14

12

Top 95% percentil Top 99% percentil

QTLs: Milk fat yield (FAY) (Viitala S.M et al. 2003, J. Dairy Sci.)

Non-return rate (FAY) (Shulman N. et al 2008, GSE)

Somatic cell score (RDM, SRB and FAY) (Lund M. S et al. 2007, J. Dairy Sci.)

Results₍₆₎ – Persistency of marker phase

Marker distance (Kb)

	RDM-SRB	RDM-FAY	SRB-FAY
P. Phase (0-100kb)	29.1% (16.5%)	33.2% (19.0%)	15.6% (9.1%)
Corr. of r (0-100kb)	0.68 (0.89)	0.58 (0.85)	0.89 (0.96)

Results(7) – Estimates of Ne

4000 FAY Effective population size (Ne) SRB 3000 RDM ····{}-··· 2000 1000 0 0 500 1000 1500 2000 4 to 16 generations Generations

SLU

Results₍₇₎ – Estimates of Ne of recent generations

Effective population size (Ne)

Summary

- Average LD was lowest for RDM (0.07) and highest for FAY (0.11)
 - North American Holstein $r^2 > 0.20$, (Bohmanova J. et al. 2010)
 - More markers to increase accuracies from genomic prediction models.
 - Regional LD differences within reported QTL positions.
 - Quantify regional LD variation to help:
 - Imputation strategies.
 - The loss of persistency was highest between RDM-FAY and lowest between SRB-FAY
 - Ne up to 4 generations ago was 84 for SRB, 74 for RDM and 73 for FAY.

Thank you

