Replacing soybean meal with proteins of European origin in dairy cow feeding

E. Froidmont¹, M. Focant², V. Decruyenaere¹, A. Turlot¹, T. Vanvolsem³

¹Centre Wallon de Recherches Agronomiques, Département 'Productions et Filières', 5030 Gembloux, Belgium Cra-W ²Haute Ecole Charlemagne, 4500 Huy, Belgium ³Dumoulin S.A., 5300 Seilles, Belgium

froidmont@cra.wallonie.be

Context & Aim

- 1. EU imports more than 30.106 tons/year of soybean meal (SBM) with some consequences: Nitrogen enrichment of Europe, Economical dependency, GMO, Deforestation...
- 2. SBM will be more and more used by Asian countries \to the offer/demand balance could change

Is it possible to replace SBM by European protein sources in the feeding of intensive dairy herds?

Material & Methods

Table 1. Composition and nutritional value of the diets

rable 1. Composition and natitional value of the dist							
	'SBM' diet	'Local' diet					
FORAGES, % Dry Matter Intake (DMI)							
Grass silage	31.4	29.3					
Maize silage	46.8	44.5					
Wheat straw	2.0	2.2					
TOTAL	80.2	76.0					
PROTEIN CONCENTRATE, % DMI							
Soybean meal	8.6	-					
Rapeseed meal	5.8	10.5					
Sunflower meal	-	3.4					
DDGS	-	3.4					
Corn germs meal	-	0.7					
Sugarbeet vinasse	0.6	0.8					
Urea	-	0.1					
NaCl	Ċ	0.1					
TOTAL	(15.0)	(19.0)					
PRODUCTION CONCENTRATE, % DMI							
Promilk super 19	4.8	5.0					

1 Torrink Super 15	4.0	5.0
NUTRITIONAL VALUE, g/kg DMI		
Protein	147	150
Digestible protein	83	81
Net energy, kcal/kg DMI	1559	1543
NDF	374	382
ADF	286	290
Fat	33	36

- 2 diets, with or without SBM, having a similar nutritional value (Table 1) and fed at an ad libitum intake level
- 2 groups of 9 Holstein dairy cows (28.6 L/d, 185-d in lactation)
- Experimental design : cross over
- 2 periods of 24-d (21-d adaptation and 3-d experiment)
 - Daily production level,
 - Individual milk sample at each milking (6:30 and 16:30) and MIR analysis,
 - Daily refusals by group for composition analysis,
 - Individual weights before and after each period.
- Statistical analyses : GLM, 3 effects (diet, animal and period)
- Calculation of feed cost according to market prices (May 2010) for concentrates ingredients and to Deprez et al. (2007) for forages

Results & Discussion

ZOOTECHNICAL RESULTS

- Similar intake level for both diets (23 kg DM/al/d)
- Similar milk production and weight gain (320 g/al/d) for both diets (Table 2)
- No significant difference in major components of the milk (Table 2)
- Significant increase (P < 0.011) of the milk unsaturated fatty acid content with the 'Local' diet (rapessed effect, data not shown)

Table 2. Milk production and composition according to the diet

	'SBIVI' diet	'Local' diet	Ρ
Milk production, kg/d			
kg/d	25.9	25.5	0.600
kg/d Fat-Protein Corrected Milk	25.8	24.9	0.303
Milk composition			
Milk fat, %	4.18	4.06	0.345
Milk fat, g/d	1081	1031	0.270
Milk protein, %	3.61	3.57	0.485
Milk protein, g/d	931	905	0.340
Milk urean content, mg/dL	187	179	0.404

ECONOMICAL RESULTS

Protein concentrate cost: 'SBM' = 259 €/ton

'Local' = 197 €/ton

But, similar cost related to the digestible protein content

• Feed production cost: 'SBM' diet = 11.85 €/100 L milk 'Local' diet = 12.25 €/100 L milk

Conclusion

This study confirms the feasibility to replace SBM by local protein sources in high producing dairy cows feeding, as well of an economical as a zootechnical aspect.

