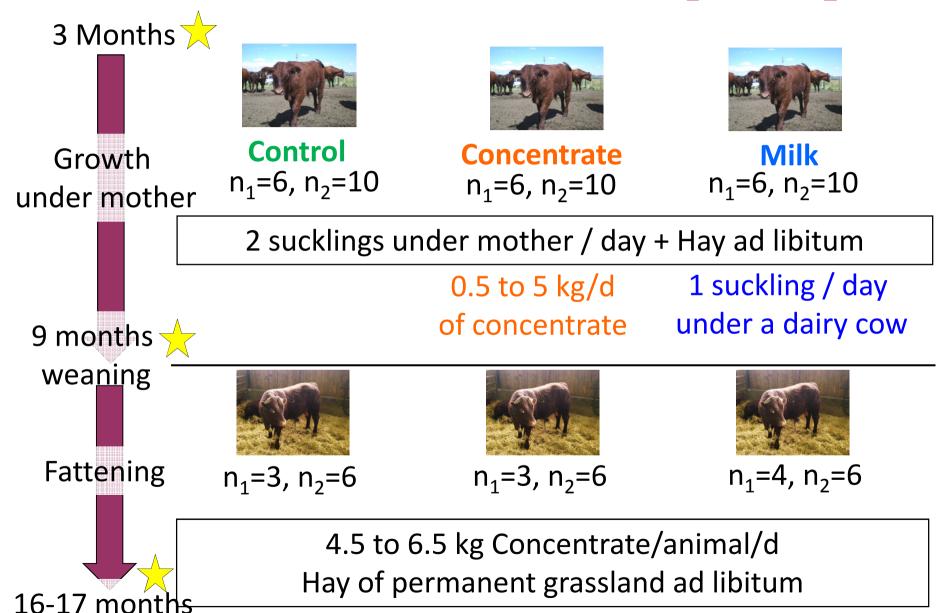
Milk and concentrate intakes in Salers calves modify body composition at weaning and feeding efficiency in young bulls' production

Garcia-Launay, F., Sepchat, B., Cirié, C., Egal, D. and Agabriel, J.

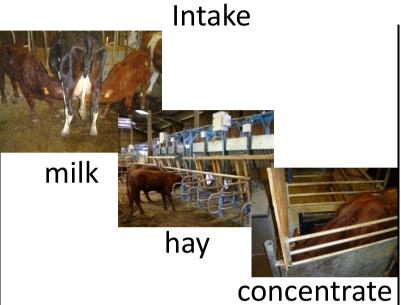
INRA, UR1213 Herbivores, Theix, F-63122 Saint-Genès-Champanelle, France INRA, UE1296 Monts d'Auvergne, F-15190 Marcenat, France INRA, UE1296 Monts d'Auvergne, F-63820 Laqueuille, France

+40% of concentrate (kg/LU/year) on Charolais farms since 1990

Veysset, Lherm et al. 2005 and pers. com.



Concentrate supply on suckling Salers farms
Salers cow / Milk production


Before weaning and residual impact during fattening

Experimental design: 2 series, n₁=18, n₂=30

Measurements:

From
3 months
to weaning

Growth & Slaughter

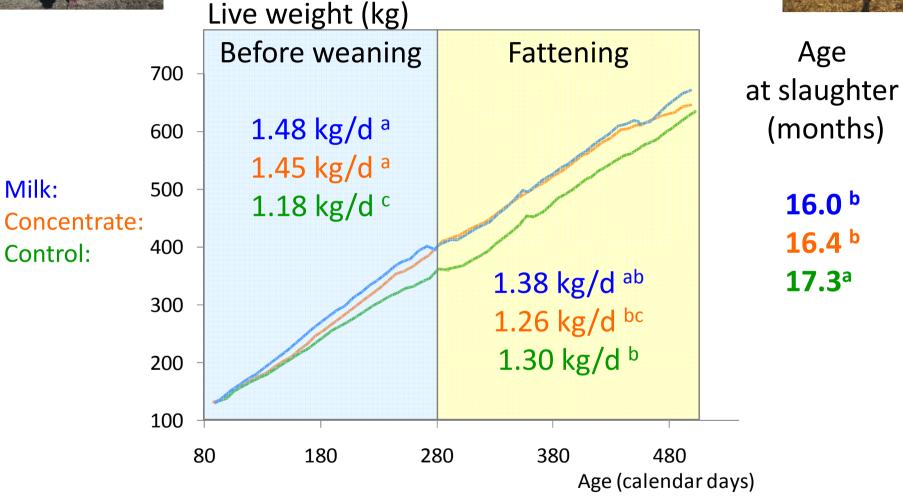
Carcass weight
Viscera compartments
6th rib dissection

Fattening

Hay and concentrate Intakes: individual

Contrasted treatments before weaning

Intake Before weaning		Control	Concentrate	Milk
Milk	(g. d ⁻¹ .kg ^{0.75})	108 ±6.7 ^a	103 ±6.5 ^a	185 ±6.5 ^b
Hay ¹	(gDM.d ⁻¹ .kg ^{0.75})	50 ±2.2 ^a	36 ±2.2 ^b	31 ±2.2 ^b
Concentrate	(gDM.d ⁻¹ .kg ^{0.75})	-	37 ±2.9	-
Metabolisable Energy ¹	(kJ.d ⁻¹ .kg ^{0.75})	762 ±18.1 ^c	992 ±18.1 ^a	837 ±18.1 ^b


Intake during fattening		Control Concentrate		Milk
Hay	(gDM.d ⁻¹ .kg ^{0.75})	38 ±1.8	40 ±1.8	40 ±1.8
Concentrate	(gDM.d ⁻¹ .kg ^{0.75})	41 ±1.2	39 ±1.2	39 ±1.2
Metabolisable Energy	(kJ.d ⁻¹ .kg ^{0.75})	887 ±22.3	887 ±22.3	883 ±20.9

¹Calculated from the measurements of the second series of experiment

The feeding treatments resulted in different growth trajectories

Different evolutions of average daily gains between weaning and fattening for the three groups

DI.			•
Roar	y com	DOSIT	ion
		P	

Weaning	Control	Concentrate	Milk
Carcass Weight (kg)	180 ±6.3 ^b	224 ±6.3 ^a	220 ±6.7 ^a
Body composition at a same EBW (315kg)			
Liver	3.9 ±0.15 ^b	4.5 ±0.14 ^a	3.9 ±0.12 ^b
Non-Carcass fat	6.7 ±0.41 ^c	11.7 ±0.41 ^a	8.8 ±0.41 ^b
Carcass composition at a same CW (208 kg)			
Muscles	143 ±1.4 ^a	138 ±1.3 ^b	143 ±1.1 ^a
Carcass fat	24.4 ±1.19 ^b	31.5 ±1.16 ^a	26.8 ±0.77 ^b
Slaughter			
Carcass Weight (kg)	365 ±6.3 ^b	393 ±5.2 ^a	401 ±5.1 ^a

different profile in AA between milk and concentrate (Labussière et al. 2009)
Viscera development / maintenance requirements

Feeding efficiency

Weight gain by amount of metabolizable energy intake (g.MJ⁻¹)

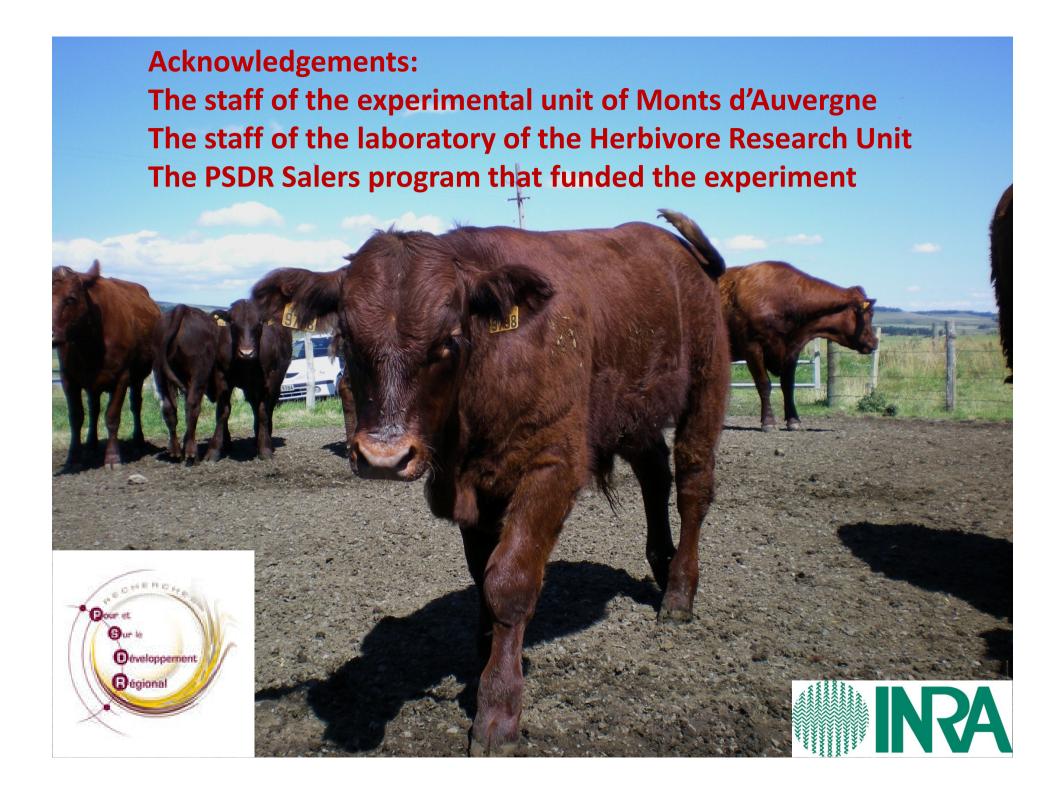
	Control	Concentrate	Milk
Before weaning ¹	24.8 ±0.51 ^a	22.1 ±0.51 ^b	26.5 ±0.51 ^a
Fattening	13.7 ±0.53	12.8 ±0.53	14.1 ±0.50
Early fattening ¹	17.2 ±0.49 ^a	13.1 ±0.49 ^b	15.8 ±0.49 ^a

¹Calculated from the measurements of the second series of experiment

Low feeding efficiency in the concentrate group with a residual effect during early fattening: maintenance and gain composition

The control group: compensatory growth during early fattening

Conclusions and perspectives


About 40% less concentrate in the Milk group. The milk production potential of suckling cows is of high importance

Consequences of the milk supply at the whole farm level?

Further investigate differences in protein and lipids gains between treatments

To be included into dynamic growth models of beef cattle from birth to slaughter

