62ndAnnual Meeting of the European Association for Animal Production, August 29th - September 2nd 2011- Stavanger NORWAY Session 36 – Free Communications in Cattle Production – abstract No. 10909 Corresponding author: luciano.migliorati@entecra.it

CONSIGLIO PER LA RICERCA E LA SPERIMENTAZIONE IN AGRICOLTURA L.Migliorati^{*1}, L.Boselli¹, F.Masoero², F.Abeni¹, D.Giordano¹, M.Cerciello¹, G.Pirlo¹

¹CRA-FLC Fodder and Dairy Production Research Centre – Cremona, Italy ²Food Science and Nutrition Institute, UCSC – Piacenza, Italy

INTRODUCTION

• Italian dairy cows are tipically fed on a forage system based upon

 Table 1: Experimental diets on DM % basis

Treatments

corn silage and alfalfa hay.

- •Corn grain and silage represent more than 50% on DM basis of the diet.
- •Partial replacement of corn silage with autumn-winter cereals or hay has no effect on milk yield and composition (Brito et al., 2006; Ahvenjarvi et al.,2006).
- •Non-structural carbohydrates (NSC) as starches, are the main source of energy for lactating dairy cows (NRC, 2001).
- Studies that compared different forage starch sources with differing digestibilities gave variable results on lactational performances and N excretion depending on starch level of intake, forage system and protein source degradability.

AIM

•To evaluate the effects of three different forage systems, based upon alfalfa hay (AH), barley silage (BS) and corn silage (CS) providing different sources and/or amounts of starch, on dairy cows lactational performances and efficiency of dietary nitrogen capture.

Ingredient	AH		BS	C	CS	
Alfalfa hay	32.9	8.3 16.		5.0		
Corn silage	23.5	21.7 41.9		1.9		
Barley silage			23.9			
/Iix soybean meal-flakes 8.3		15.0 12.6		2.6		
Mix corn meal-flakes 22.8			18.9 17.5		7.5	
Whole cotton seed	4.0		4.0 3.9		.9	
Distillers	61		58	5.7		
Wheat bran	0.1		0.7 0.7			
Minoral calta	0.7		0.7 0.7			
	1./		1./	I	• /	
able 2: Treatments chemica	l-physical cha	racteristics				
			Treatments			
	AH		BS CS			
CP (% DM)	16.8	16.8 16.7				
RUP (% CP)	40.9		34.0 37.0			
RDP (% CP)	59.0		65.9 62.9			
NDF (% DM)	36.0		36.2	36.5		
starch (% DM)	26.2		26.3	26.1		
NE _L (Mcal/kg of DM)	1.62		1.64	1.66		
MP (% DM)	10.8		10.5	10.7		
able 3: Experimental treatment	nts results					
			Treatments			
		AH	BS	CS	SEM	
DMI (kg/day/group)		175	166	182		
BCS*		2.91	2.97	2.95		
Milk yield (kg/day)		28.30	28.30	28.50	1.15	
Milk fat content (%)		3.80 ^a	4.10 ^b	3.90 ^{ab}	0.15	
Milk protein content (%)		3.62	3.54	3.58	0.05	
Milk urea content (mg/dl)		29.50 ^d	38.60 ^c	35.70 ^c	1.7	
pH		6.71	6.71	6.71	0.02	
Titratable acidity (°SH/100 ml)		6.02	5.94	5.87	0.15	
NCN(%)		0.130	0.129	0.131	0.13	
$\frac{\text{INPIN}(\%)}{\text{CNI}(0/3)}$		0.040	0.039	0.036	0.004	
UN (%) Mills fot wield (V ~/dev)		2.35	2.47 1 11	2.31	0.00	
Mills protoin wield (leg/day)		1.05	1.11	1.00	0.04	
whitin row with different superscript are significantly different ($D > 0.05$) 1.00 0.04					0.04	
within row with different sur	perscript are sig	phificantly dif	ferent ($P < 0.001$)			
Edmonson et al., 1989		Smilleunery an				
able 4: N balance estimation	n and efficiend	cy				
	Treatments					
	AH		BS	CS		
N intake (g/day/group)	4731		4505	4922		
Milk N (g/day/group)	1132		1087	1123		
N losses (g/day/group)	3598		3418	379	3799	
NUE (%)	23.9		24.1	22	22.8	
V losses (kg/cow/year)	164		155	17	173	

MATERIALS AND METHODS

- Twenty four multiparous Italian Friesian cows divided into three groups according to parity, DIM (165±93) and milk production, were fed diets with 17% CP (on DM basis) (Table 1)
- •Chemical composition and nutrition characteristics of the diets are in Table 2.
- Experimental design was a Latin square (3x3) with three treatments and three periods of four weeks. The first two weeks were for adaptation, whereas the last two were sampling periods.
 N excretion was estimated on the difference between N intake and N milk, utilizing DMI, CP dietary, milk yield and protein content.

RESULTS

•No difference in milk protein and fat yield.
•No difference in milk chemical – physical parameters between treatments.
•Higher milk fat content in BS than in AH (P<0.05).

Higher milk urea content in CS and BS than in AH (P<0.001).
No difference for average DMI and BCS among groups (Table 3)
Estimate N excretion was reduced by 10% and 5% in BS compared to CS and AH respectively (Table 4)

CONCLUSIONS

•Partial substitution of corn silage with alfalfa hay or barley silage * does not influence milk production.

•Although its highest protein rumen degradation, barley silage does not increase N excretion probably because of its highest protein digestibility.

ACKNOWLEDGMENTS

RENAI PROJECT: Research financed by **MiPAF**