

Selection against null-alleles in CNS1S1 will efficiently reduce the level of free fatty acids in Norwegian goat milk

Thor Blichfeldt¹⁾, Inger Anne Boman¹⁾ and Helga Kvamsås²⁾

¹⁾ The Norwegian Association of Sheep and Goat Breeders
 ²⁾ TINE Norwegian Dairies SA

Outline

- 1. Goat milk production in Norway
- 2. Free fatty acids in goat milk
- 3. Alpha-S1-casein genotypes
- 4. The Sunnylven project: Effects of casein genotypes on milk production and quality
- 5. Gene frequency change in breeding bucks
- 6. Expected improvements in milk quality

Goat milk production in Norway (1)

- Production per year
 - 20 million litres of milk
- Structure
 - Farmers: 430
 - Milking goats
 - Total: 38 000
 - 85 goats per herd
 - Recorded: 85%

Breed: Norwegian Dairy Goat

- Native breed
- Composite (open herd book); some import of semen
 - Saanen
 - French Alpine

Goat milk production in Norway (2)

Products

- Brown "cheeses"
 - Whey products
 - 85% of the goat milk
- White cheeses
 - Increased consumption?
 - In Norway
 - Export

Industry focus

(TINE Norwegian Dairies the farmers' cooperative)

- 1. "Healthier goats" (Lindheim et al, EAAP 2011, Session 06-10)
- 2. Improving milk quality
 - Enhance cheese making capability
 - Reduce Free Fatty Acids

Free fatty acids (FFA) in goat milk

- Post milking lipolysis
- Increased levels of FFA in goat milk and cheese are associated with "bad taste"
 - Rancid
 - Consumers consider it to be the goat flavour

- High levels of FFA is a major problem in Norway
 - Highest in the summer
 - Grazing
 - Mid lactation
- Large variation between herds and between goats within herd
 - Body condition
 - Feeding
 - Genetics

CSN1S1 (alpha-S1-casein) haplotypes

Norwegian goats

- Ten CSN1S1 haplotypes (Hayes et al, 2006)
- Two haplotypes with a single point deletion in CSN1S1 ("null-allele")
 - Exon 12: frequency 0.72
 Unique for Norway
 - Exon 9: frequency 0.08

Effects of null-alleles

- No production of alpha-S1-casein
- Decreased alpha-S1-casein and total protein %
- Reduced cheese making capabilities
- Decreased milk fat %

Increased FFA Lamberet et al, 1996 Åndøy et al, 2003 Grindaker et al, 2007

Aim of the Sunnylven project

- 1. Quantify the effects of "null-alleles" on
 - Milk production
 - Milk quality
- 2. Evaluate the effect of crossing French Alpine (imported semen) with Norwegian goats

Material

- 8 herds, 311 goats, first and second lactation
- 2 "breeds"
 - Norwegian sires (>20)
 - French Alpine sires (15)
- 3 alpha-S1-casein genotypes
 - Group 0-0: Two null-alleles
 - Group 0-1: One null-allele
 - Group 1-1: Zero null-alleles
- Records from the Goat Recording System (3 per lactation)
 - Milk per day (kg)
 - Milk content (FTIR spectrum)

Group 0-0: Two null-alleles Group 0-1: One null-allele Group 1-1: Zero null-alleles

The goats

	Genetic group						
Breed of sire	0-0	0-1	1-1	Total			
Alpine ¹⁾	8	92	40	140			
Norwegian	95	53	23	171			
Total	103	145	63	311			

¹⁾ One of the Alpine bucks were heterozygous for the Exon 9 deletion

Analysis of variance

Measurements per goat per milk recording

- Milk per day (kg)
- Dry matter content (%)
 - Protein (%)
 - Fat (%)
 - Lactose (%)
- Dry matter per day (gram)

FFA (mmol/litre)

Fixed effects

- Herd (8)
- Genetic group (3)
- Breed of sire (2)
- Lactation number (2)
- Calendar month (11)
- Month of lactation (8)
- Genetic group x
 Month of lactation (24)

Effect of genetic group (LS-Means)

Group 0-0: Two null-alleles Group 0-1: One null-allele Group 1-1: Zero null-alleles

	Genetic group						
	0-0	←Diff.→	0-1	←Diff.→	1-1		
Milk (kg/day)	2.61	-0.12***	2.49	0.04	2.53		
Dry matter (%)	11.76	0.25***	12.01	0.17**	12.18		
Protein (%)	3.16	0.06***	3.22	0.05***	3.27		
Fat (%)	4.23	0.16**	4.39	0.08	4.47		
Lactose (%)	4.37	0.04**	4.41	0.04**	4.45		
Dry matter (g/day)	304	-7	297	9*	306		
FFA (mmol/litre)	1.39	0.55***	0.84	(-0.02)	0.86		
* P<0.05 · ** P<0.01 · *** P<0.001							

FFA throughout lactation

Group 0-0: Two null-alleles Group 0-1: One null-allele Group 1-1: Zero null-alleles

(LS-Means)

→0-0 **-**-0-1 **-**-1-1

Genotypes for ½ year old bucks approved for breeding

Group 0-0: Two null-alleles Group 0-1: One null-allele Group 1-1: Zero null-alleles

0-0 0-1 1-1

Year of birth

Summing up

- Norwegian goat population: 60-70% of the goats have been homozygous for the nullalleles of the alpha-S1-casein gene
- 2. Homozygous null-allele goats are predisposed for elevated levels of FFA from mid lactation
- 3. In five years time nearly all of the homozygous null-allele goats will be history in most of the herds
- Due to changes in gene frequency the problems with FFA should have decreased substantially
- 5. Inadequate feeding and management may still cause FFA problems

Thank you for your attention!

