

Hamburger originated from lamb meat submitted to the organic and conventional production models¹

Nivea Maria Brancacci Lopes Zeola², Américo Garcia da Silva Sobrinho³, Hirasilva Borba³, Gabriela Milani Manzi⁴, Amanda Nonato⁵, Fabiana Alves de Almeida⁴

¹Second author post-doctor project. Supported by FAPESP

²Animal Science Researcher of São Paulo State University, Unesp, Jaboticabal, SP, Brazil. FAPESP Scholarship ³Animal Science Professor of São Paulo State University, Unesp, Jaboticabal, SP, Brazil.

⁴ Animal Science Post-Graduate Student of São Paulo State University, Unesp, Jaboticabal, SP, Brazil ⁵ Animal Science Graduate Student of São Paulo State University, Unesp, Jaboticabal, SP, Brazil

RESULTS

•Sustainables production systems are a trend.

INTRODUCTION

- •Increasing of organic food consumption in the world. •Lamb meat processing in organic model is incipient.
- Table 1. pH and color (L*, a* e b*) of the hamburgers elaborated with lamb meat originated from organic and conventional models associated to pork fat inclusion.

Production Model (M)	Parameter				
	Color				
	pН	L*	a*	b *	
Organic ¹	5,93 ^a	57,99 ^a	7,24^b	8,81	
Conventional ²	5,84 ^b	55,54 ^b	8,43 ^a	9,19	
F Test	49,74**	7,04*	9,20**	1,87	
Ρ	0,0001	0,0174	0,0079	0,1900	
MSD	0,0274	1,9587	0,8295	0,5978	
Fat tenor (F)					
20% ³	5,86 ^b	57,36	8,06	8,72	
30% ⁴	5,90^a	56,17	7,61	9,28	
F Test	11,11**	1,66	1,32	3,86	
Ρ	0,0042	0,2157	0,2681	0,0671	
MSD	0,0274	1,9587	0,8295	0,5978	
F Test (M x F)	2,65	0,07	0,31	1,37	
Ρ	0,1232	0,7943	0,5835	0,2590	
CV(%)	0,49	3,64	11,17	7,01	

•Meat processing represent an important alternative to increase the profitability of the systems.

OBJECTIVES

To evaluate qualitative characteristics of hamburgers produced with lamb meat originated from organic and conventional production models.

MATERIAL AND METHODS

- •The study was conducted in the Sheep Sector, of São Paulo State University, Department of Animal Science, Unesp, Jaboticabal, SP, Brazil.
- •48 Ile de France lambs were weaned and divided into Table 2. Water holding capacity (WHC), cooking loss (CL), shear force (SF) and 2-thiobarbituric acid reactive substances (TBARS) of the hamburgers two groups of 24 animals each: organic and elaborated with lamb meat originated from organic and conventional conventional model. models associated to pork fat inclusion.

^{a,b} Inside of a same factor, followed averages for different letters in the column, differ to each other for the Tukey's Test. MSD – minimum significant difference. P - probability. CV – coefficient of variation. ¹Organic production model; ²Conventional production model; ³Inclusion of 20% of pork fat; ³Inclusion of 30% of pork fat.

- •Tifton-85 pasture and rotational grazing
- •Roughage: Concentrate ratio (50:50)
- •Slaughter with 32 kg of body weight
- •Dissection of 48 lambs Ile de France palette submitted to the organic and conventional production models were used to hamburgers elaboration, with 20 and 30% of pork fat.
- •Qualitative characteristics evaluated: pH, color, water holding capacity, cooking loss, shear force and lipid oxidation.

Production Model (M)	Parameter				
	WHC	CL	SF	TBARS	
	(%)	(%)	(kgf/cm ²)	(mg of malonaldehyde/ 1000 g of meat)	
Organic ¹	62,98	24,31	0,68 ^b	1,78	
Conventional ²	62,65	24,98	0,97 ^a	1,84	
F Test	0,03	0,71	7,38*	0,37	
Ρ	0,8650	0,4107	0,0152	0,5532	
MSD	4,0131	1,6839	0,2286	0,1890	
Fat tenor (F)					
20% ³	65,02 ^a	23,91	0,83	1,80	
30% ⁴	60,61 ^b	25,39	0,82	1,82	
F Test	5,43*	3,50	0,01	0,03	
Ρ	0,0332	0,0796	0,9345	0,8598	
MSD	4,0131	1,6839	0,2286	0,1890	
F Test (M x F)	0,10	1,16	0,05	5,55*	
Ρ	0,7518	0,2977	0,8338	0,0316	
CV(%)	6,74	7,20	29,32	11,01	

² Inside of a same factor, followed averages for different letters in the column, differ to each other for the Tukey's Test. MSD – minimum significant difference. P - probability. CV – coefficient of variation. ¹Organic production model; ²Conventional production model; ³Inclusion of 20% of pork fat; ³Inclusion of 30% of pork fat.

CONCLUSIONS

The qualitative characteristics (color, cooking loss, shear force and lipid oxidation) of the hamburgers did not suffer alterations with the inclusion of pork fat (20 and 30%), being higher pH and lower water holding capacity for 30% of fat, what suggests the adoption of inclusion of 20% of fat, with views to a healthier human diet.