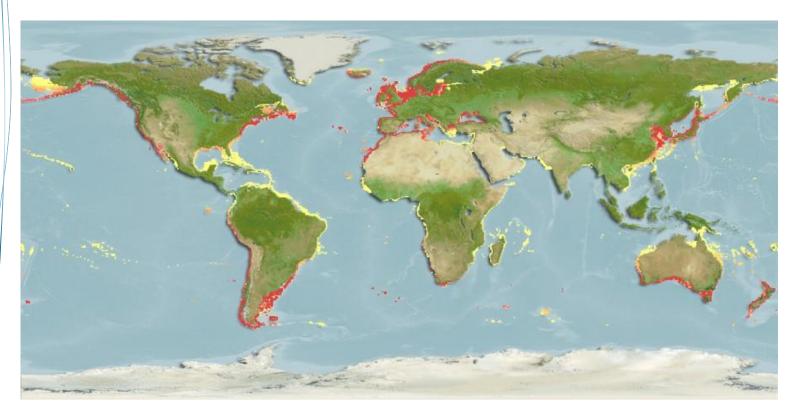
DETECTION OF GROWTH-RELATED QTLs IN TURBOT (SCOPHTHALMUS MAXIMUS)

E. Sánchez-Molano¹; A. Cerna²; M.A. Toro²; J. Fernández¹; M. Hermida³; C. Bouza³; B.G. Pardo³ and P. Martínez³

> Turbot (Scophthalmus maximus)

INTRODUCTION



- > Diploid flatfish
- > 22 chromosome pairs
- > Small genome (< 800 Mb)</p>
- > Gonocoric with no sexual dimorphism

> Distribution

Introduction

- > European norhtern coasts
- > Baltic and Mediterranean sea
- > Chile, Argentina, South Australia and China

INTRODUCTION

> Interest

- > Food fish
- > Culture programs in Europe
 - Since 90's in European Atlantic
 - Optimum results in Galician coasts (Spain)
 - > Increased production
- > QTL studies
 - Sex determination (Martínez et al. 2009)
 - > Body length (Ruan et al. 2010)

INTRODUCTION

OBJECTIVES

- Detect and locate QTL affecting
 - Body weight
 - Body length
- > Determine marker-trait associations

INTRODUCTION OBJECTIVES

METHODS

> 8 turbot full-sib families

- > 01, 03, 04, 06 (8 months)
- > *AS-1*, *AS-2*, *AS-3*, *AP* (5 months)

Microsatellite markers

- Average 100 microsatellites/family
- > 26 linkage groups
- > Genetic map by Martínez et al. 2009

> 2 methods

- GridQTL: Linear regression
- QTLMap: Maximum likelihood

INTRODUCTION
OBJECTIVES
METHODS

Uncontrolled factors

Separate analyses

Different QTL between families

Two methods (concordant QTL)

QTL repeatability (repeated QTL)

INTRODUCTION OBJECTIVES METHODS

RESULTS

> Linkage groups with detected QTL for weight

Family	01	03	04	<i>06</i>
GridQTL(LR)	15 17	5 12 16 17 20	14)	11
QTLMap (ML)	1 15 16	1 5 16 17 20	14 15	2

Family	AS-1	AS-2	AS-3	AP
GridQTL(LR)	13	16	18	3
QTLMap (ML)		6		12

- > High concordance between methods
- > Similar results observed for length

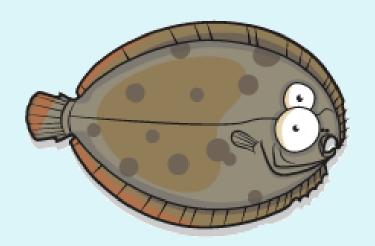
Introduction Objectives Methods

RESULTS

- Associated markers on weight
 - > 4 significant markers 6.8% 17.9%
- > Associated markers on length
 - > 5 significant markers 7.7% 16.2%
- > Special case
 - > Sma-USC220 in Fam01 LG14

INTRODUCTION OBJECTIVES METHODS RESULTS DISCUSSION

> First wide QTL analysis for growth traits


> Use of two methods → High consistent results

> Incipient studies → Increase marker density

> Comparative genomics → focus on regions

Thanks for your attention!!

