

A comparison of health status and milk quality in dairy cows reared in nearby areas of Italy and Slovenia

B. Gaspardo, A. Lavrencic, S. Volaric, B. Stefanon

Department of Agriculture and Environmental Sciences University of Udine - Italy

> Department of Zootechnical Sciences University of Lublijana - Slovenia

Chamber of Agriculture and Forests of Slovenia – Nova Gorica Department – Slovenia

"62nd Annual Meeting EAAP 2011"

Stavanger, NORWAY August 29th - September 2nd

Reasons to invest on Animal Welfare issues

- Public concerns for animal living conditions
- [EU / National] Regulation and Legislation
- Enhancement of herd health and reducing cost related diseases
- Increase animal performances and [quality / safety] of food
- Valorization of social and ethical role of farmers

Methods to evaluate animal welfare

DIRECT METHODS:

Physiological parameters (rumination, breathing acts, heart rate, biomarkers in tissues and biological fluids)

> Clinical and related parameters (BCS, cleaness, injuries, parasites, clinical illness, external conditions of body, laminitis)

INDIRECTS METHODS:

Behavioural parameters (evaluation of animal-animal and animal- human interaction; comfort evaluation)

- > **Productive parameters** (amount and quality of productions)
- > Environmental parameters (farm structures and management)
- > Feeding parameters (ration composition and requirements)

The project

The research activity within a Interreg IIIA Italia/Slovenia project

Italian Partners: 1) Department of Animal Sciences, University of Udine 2) Breeders Association of Friuli Venezia Giulia region **Slovenian Partners: 1)** Department of Zootechnical Sciences University of Lubiana 2) Chamber of

Agriculture and Forests of Slovenia - Nova Gorica Department

Aims

- 1) Cooperation among Research Institutions to harmonize production systems
- **2)** Evaluation of animal welfare conditions, by mean of a survey realized on 22 Italian and Slovenian dairy farms during two consecutive years
- **3)** Evaluation of welfare status on the qualitative characteristics of milk and milk products

The transition cow: a spontaneous model for welfare studies

High susceptibility to stress in the three weeks before calving and during the first and the second month of lactation.

Main causes of illness

- 1. Reduction of immunity in consequence to lower neutrophyls and linphocytes activity (increase of steroidal hormones, dietary imbalance);
- 2. Activation of inflammatory acute phase response before and after calving and intake reduction;
- 3. Metabolic variations like lipomobilization to balance the energy deficit of early lactation;
- 4. Imbalanc of rations;
- 5. Management;

Classification of farms in High and Low input according to:

- Number of animals per farm
- Percentage of forage/hay in the ration
- Individual level of milk yield
- In-farm production of feedstuffs
- Number of animal / ha of utilizable land

The sampling for the survey (two consecutive years)

Farms, #	Italy	Slovenia	Total
High input	6	7	13
Low input	6	3	9
Total	12	10	22
Animals	198	148	346

In each farm, 12-22 cows were chosen within a maximum of 60 days from calving

Samples within 30-60 DIM

- Ration and feedstuffs
 DM, CP, Lipid, Ash, NDF, Starch
- Milk

Protein, fat, ash, lactose, SSC, CFU

• **Blood** jugular vein, before morning meal

Biomarkers in blood

Energy metabolism	Inflammation	Oxidative stress
FFA	Total proteins	GPx
β-ΟΗΒ	Albumin	Hb
Glucose	Globulins	MDA
GOT	Haptoglobin	NOx
GGT	Ceruloplasmin	

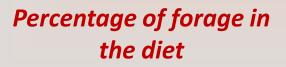
Statistical analysis

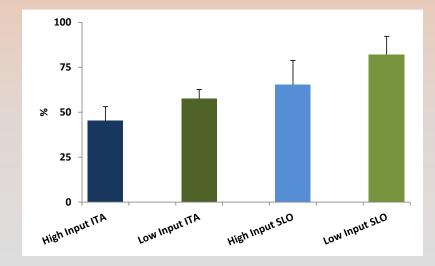
Mixed model:

Fixed effect for Country, Year Random effect for Farm

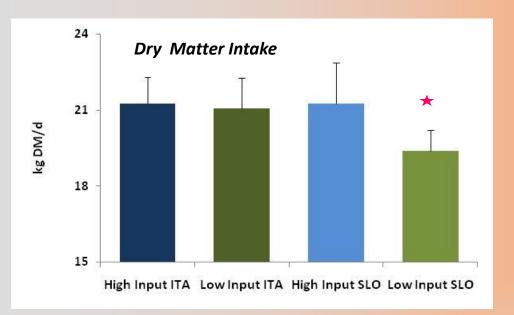
Classification analysis

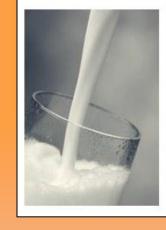
Discriminant analysis with two set of independent variables: milk and blood

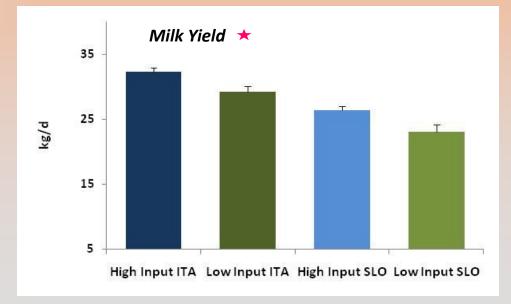

RESULTS



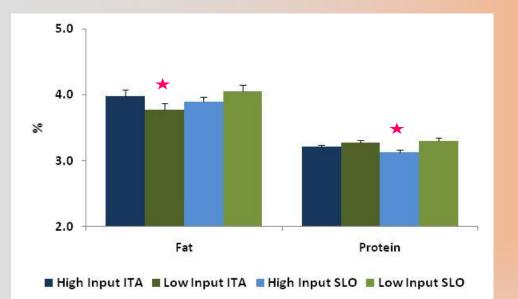
Ingredients of the rations

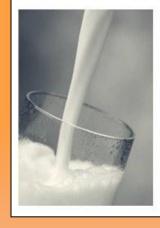

	Нау		Conce	Concentrate		Corn silage		s silage
	mean	sd	mean	sd	mean	sd	mean	sd
High Input ITA	351	136	397	79	252	110	0	0
Low Input ITA	485	178	424	50	91	181	0	0
High Input SLO	90	102	266	135	161	87	484	166
Low Input SLO	441	266	179	101	0	0	380	262

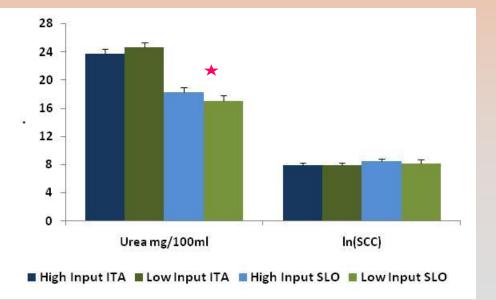


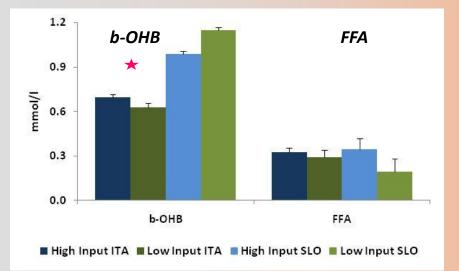


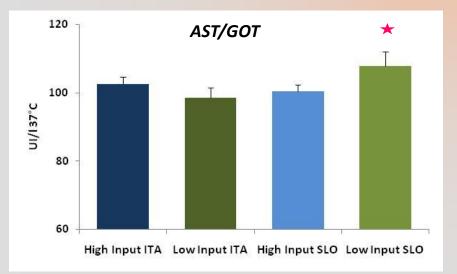
Chemical composition of the rations

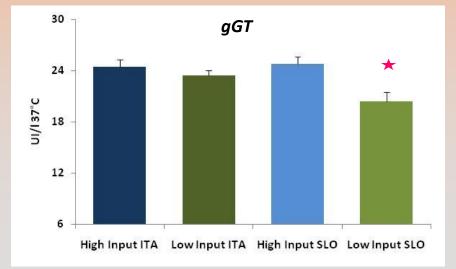

	Crude Protein	NDF	Starch	Lipids
	mean sd	mean sd	mean sd	mean sd
High Input ITA	15.8 1.1	40.4 3.8	23.4 2.9	3.2 0.8
Low Input ITA	15.1 2.1	42.8 6.8	24.0 3.1	2.4 0.3
High Input SLO	14.1 2.1	42.1 6.2	13.8 2.7	2.8 0.3
Low Input SLO	12.8 2.8	49.8 8.1	10.8 4.0	2.3 0.3



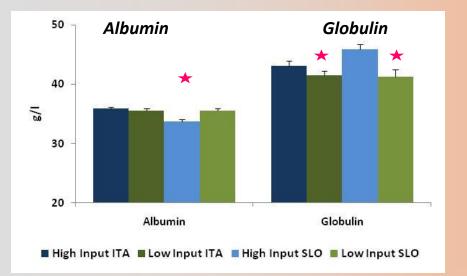


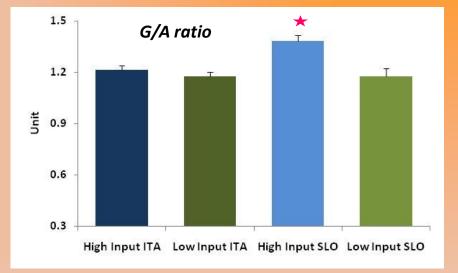

Milk analysis

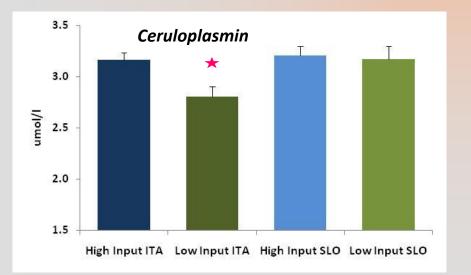


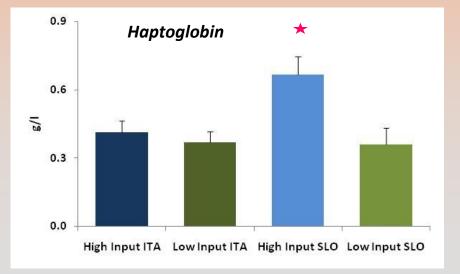


BIO-markers of energy balance / liver functions

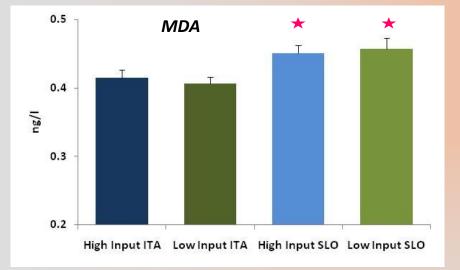


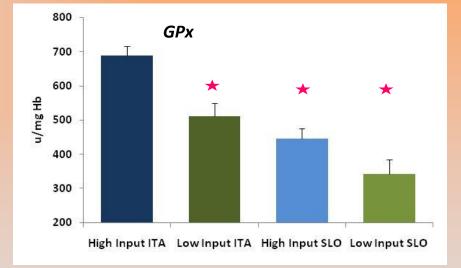


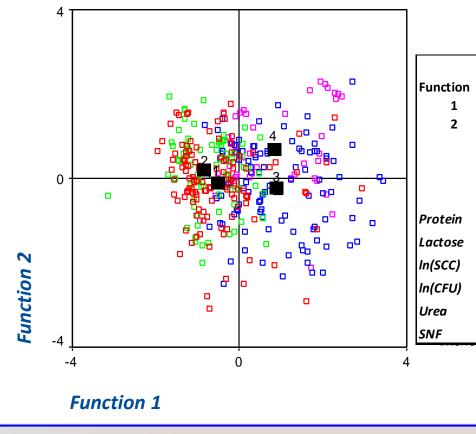




BIO-markers of inflammation





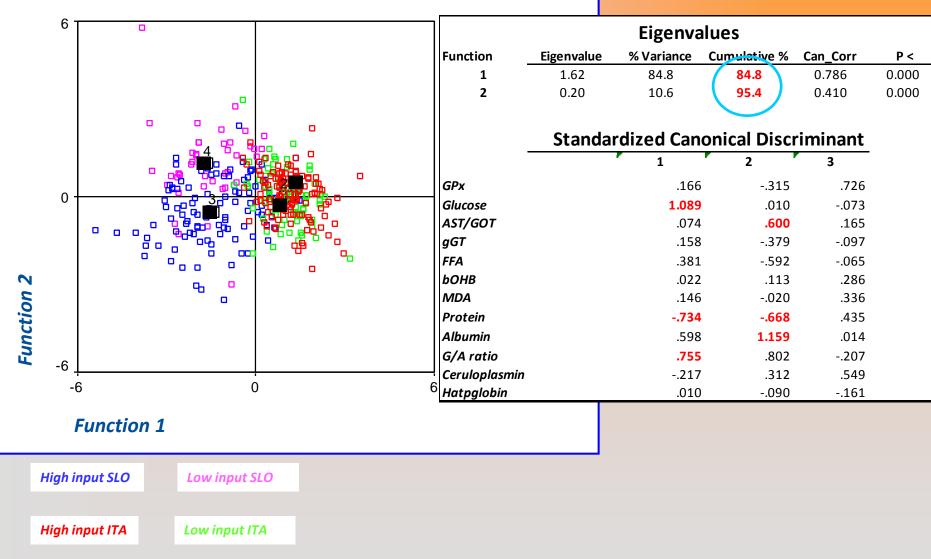

BIO-markers of oxidative STRESS

Milk as discriminant variables for high input Vs low input

Canonical discriminant functions

Eigenvalues									
tion	Eigenvalue	% Variance	Cumulative %	Can_Corr	P <				
1	0.40	73.7	73.7	0.536	0.000				
2	0.11	20.0	93.8	0.314	0.000				
	Standardized Canonical Discriminant								
		1	2	3					
ein		0.220	0.565	-0.443					
ose		0.553	0.755	0.067					
CC)		0.572	0.461	1.795					
FU)		-0.459	-0.423	-1.091					
7		0.780	-0.633	-0.127					
		0.588	-0.123	0.907					

High input SLO


Low input SLO

High input ITA

Low input ITA

Blood as discriminant variables for high input Vs low input

Canonical discriminant functions

Considerations

Data derive from a *survey of farms in contiguous area*, but with different ration compositions, nutritive content, animal genetic and management

In both Countries, Low Input is not a synonimous of improved physiological conditions, lower stress and higher food quality

It seems that dietary factors are critical for animal welfare after calving in dairy cows: also in mild producing dairy cows, nutritional imbalance contributes to push animals in a proinflammatory conditions

Selected biochemical analysis in blood are reliable biomarkers to depict the physiological conditions of dairy cows