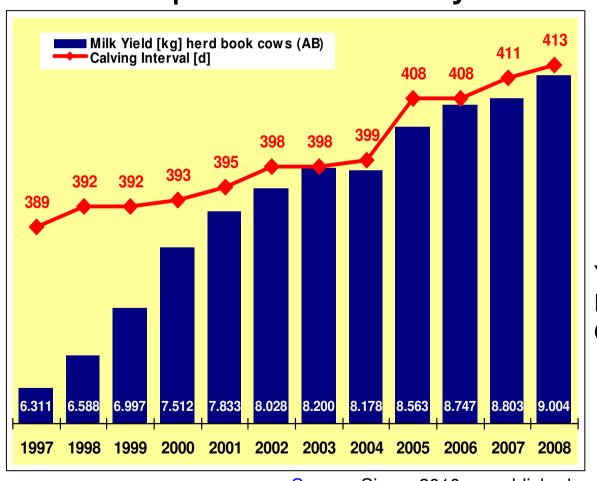
Reproductive management of dairy herds – a bio-social approach


Agnes Przewozny

Humboldt University of Berlin, Germany Department of Crop & Animal Sciences

1. Background

Development of fertility and milk yield

Years 1997-2010 Federal state Brandenburg, Germany

Source: Simon 2010, unpublished

Research Questions & Objectives

- → Analysis of management aspects with regard to reproductive & milk performance of dairy herds:
- 1. Husbandry system: floors & lying areas
- 2. Reproductive management: heat detection
- 3. Personnel management: motivating employees
- → How are these 3 management aspects related with reproductive & milk performance?
- → How are the biological and social aspects of farm management related?

2. Material & Methods ...

Data I

→ Questionnaire Survey in 84 dairy farms

→ Stratified Random Sample:

days open

>9 dairy cows

→ ~ 10 % of dairy farms in Brandenburg

 \rightarrow 25,114 cows

→ Face-to-Face interviews in 2007:

& Direct observations

→ Herd manager or farm owner

Data II

→ Herd means from milk performance testing in 2007: Calving Interval & 305-days Milk Yield

Uckermark

Barnim

Ober-

Mittelmark

Sachsen-Anhalt

Berlin

Polen

Oderland

Dahme Spree-

Oder-Spree

Lausitz Sachse

.... Material & Methods

Data Analyses:

→ Qualitative Data:

Inductive Approach following Strauss & Corbin (1990)

ATLAS.ti Software

Iterative Coding of Text Data

Merging Codes to Categories

→ Statistical analysis

→ Quantitative Data:

Dependent variables: → 305-day Milk Yield [kg]

→ Calving Interval [days]

Explorative & Descriptive Methods

T-tests, Variance Analyses

Reproductive & Milk Performance

Mean:

Herd Size 306.3 cows

$$n = 80$$

 $SD \pm 238.3$

305-d Milk Yield

8555 kg/ 305 d

$$n = 80$$

 $SD \pm 1132,9$

Calving Interval 413.2 days

$$n = 80$$

$$SD \pm 18.73$$

Relations:

$$p = 0.01$$

Cow Comfort & Performance ...

Floors:		Wet ? [absolute and %]				Σ	
		Yes		NO		absolute %	
Non-slippery? [absolute and %]	Yes	14	17,5 %	7	8,8 %	21	26,3 %
	No	57	71,3 %	2	2,5 %	59	73,8 %
	Σ	71	88,8 %	9	11,3 %	80	100 %

• dry & non-slippery floors: CI = 398.2 d $(n = 7 SD \pm 14.47)$

• wet & slippery floors: CI = 414.8 d $(n = 55 SD \pm 20.20)$

• Difference of means CI: 16.6 d p = 0.055

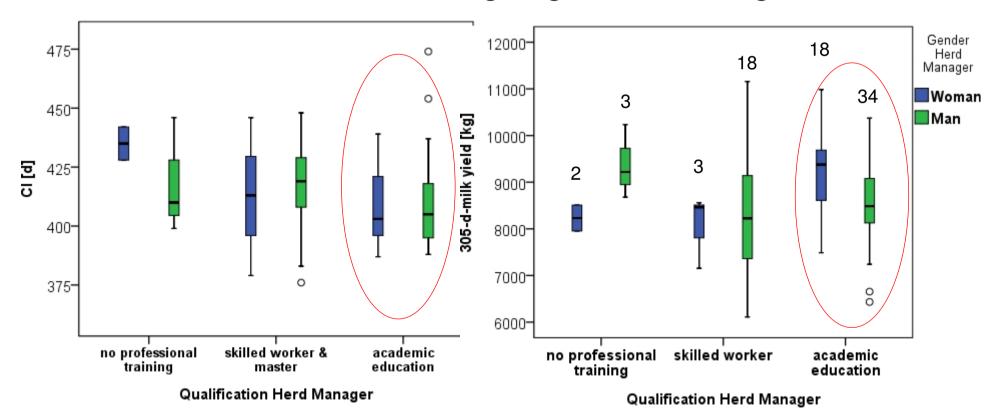
• Floors & Milk Yield → n.s.

... Cow Comfort & Performance

Lying Areas:		F			
		No	tolerably	Yes	\sum
Dry? [%]	No	16,4	7,7	3,1	26,2
	tolerably	12,3	12,3	6,2	30,8
	Yes	6,2	7,7	29,9	43,1
	Σ	33,8	27,7	38,5	100

```
• wet & hard: 8300 kg milk/ 305 d (n = 10 \text{ SD} \pm 1194.058) CI = 419,1 d (n = 10 \text{ SD} \pm 19.232)
```

```
• dry & flexible: 9410 kg milk/ 305 d (n = 19 SD \pm 884.679) CI = 408,9 d (n = 17 SD \pm 23.111)
```


• Differences: 305-d MY \rightarrow 1110 kg \rightarrow p = 0.011 Cl \rightarrow 10.2 d \rightarrow n.s. p=0.251

Heat Detection

- **Responsibility** for heat detection:
 - \rightarrow in 55.4% of farms one person (n=83)
 - \rightarrow calving interval in tendency shorter: \rightarrow difference 6.3 days (p=0.129)
- Frequency, situation, pedometer & pregnancy control:
 - → no direct relation to calving interval
- Additional use of mating bulls:
 - → 57.1% of farms keep bulls for natural mating
 - → indicates heat detection is a big issue

Herd Manager & Herd Performance

- Herd Managers:
 - → 31 % Women & 69 % Men
 - → 66.7 % of Herd Managers graduated, in large farms 82 %

Diffences between Women & Men (graduated):

→ CI: 0.3 d (n.s.) → 305-d Milk Yield: 752.9 kg (p=0.005)

Motivating Employees ...

What do you do to motivate the employees in your farm?

Performance Pay:

26.2 %

→ different performance pay schemes

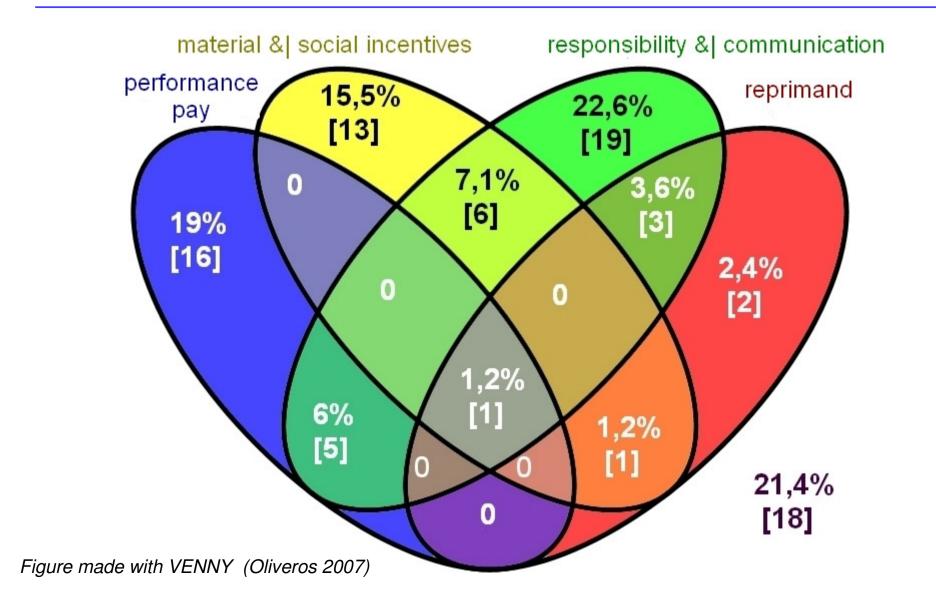
Material & Social Incentives:

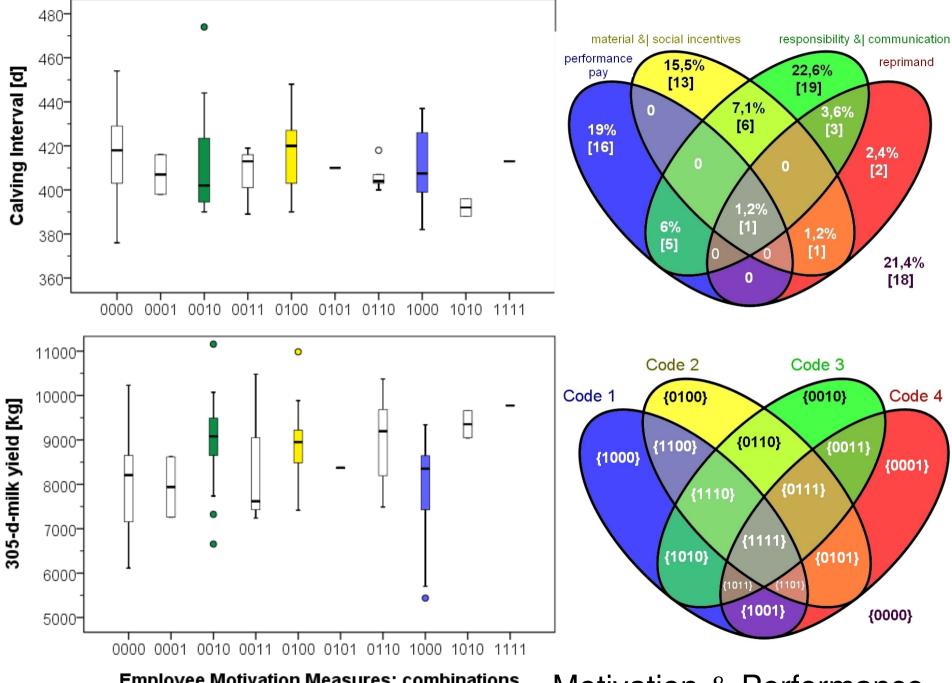
25 %

- → material incentives, e.g. bonuses & farm products
- → social incentives, e.g. company party

Responsibility & Communication:

40.5 %


- → delegation of responsibility to employees
- → striving for good communication


Reprimand:

8.3%

→ disciplining measures

... Motivating Employees ...

Employee Motivation Measures: combinations

Motivation & Performance

4. Conclusions & Implications ...

- 1. Common free-stalls with cubicles mainly not appropriate for cow comfort, conditions of floors and lying area limiting performance.
- 2. Success of heat detection seems to depend more on responsibility than on situation, technique & frequency.
- 3. Performance pay as sole motivating measure not effective.
- 4. Motivating employees through delegation of responsibility & combination with other incentives more promising than performance pay.

... Conclusions & Implications

- Results underpin need for improved housing for animal welfare and performance.
- Need for further research into personnel management in dairy farming:
- Motivation Approaches & Payment Schemes
- Gender Aspects of Management with regard to:
 - → Human-Animal-Interaction
 - → Herd Performance
 - → Economic Effects

Acknowledgements

- Participating farmers
- Prof. K.J. Peters, Humboldt-Universität zu Berlin
- Prof. V. Bitsch, Technische Universität München
- Dr. M. Simon, Rinderzucht Berlin Brandenburg GmbH
- H. Wilhelm Schaumann Stiftung for partial funding

Thank you for your attention!

Agnes Przewozny

Humboldt University of Berlin

agnes.przewozny@agrar.hu-berlin.de