Work in progress on genomic evaluation using GBLUP in French Lacaune dairy sheep breed

G. Baloche, H. Larroque, J.M. Astruc, J.M. Babilliot, M.Y. Boscher, P. Boulenc, C. Chantry-Darmon, C. de Boissieu, G. Frégeat, B. Giral-Viala, P. Guibert, G. Lagriffoul, C. Moreno, P. Panis, C. Robert-Granié, G. Salle, A. Legarra, F. Barillet (*)

(*) corresponding author: francis.barillet@toulouse.inra.fr INRA, UR 631, Station d'amélioration génétique des animaux 31326 Castanet-Tolosan, France

Reasons to think that genomic selection is possible in the Lacaune dairy sheep

- A Progeny-test based scheme (nucleus flocks):
 - 174,000 ewes recorded in 2010 in nucleus flocks
 - 420 AI rams progeny-tested each year (samples of 40 daughters)
- Recording and selection on milk yield and contents, SCS and udder type traits plus scrapie resistance on Prp gene
- Storage of DNA/blood of the Lacaune AI rams organized since the middle of the 90's
- Ovine SNP50 BeadChip available since 2009

=> Possibility of building a large reference population

Genotyping : quality control and frequency of SNPs

	Threshold	Exclusion	
Call freq	0.98	4.4%	
Call rate	0.97	8.4%	
HWE	10 ⁻⁵	4.7%	
MAF	0.01	10%	
Finally	-	19%	

Distribution of Minor allele Frequency

- Genotyping of rams born between 1998 and 2008
- 2,567 genotypes validated
- Numerous SNP retained : 43,929 out of 54,241

Structure of the Lacaune reference population (4,326 at the end of 2010)

- Learning set: Rams with reliable estimate of their genetic merit
- Validation set: Considered as candidate for selection in our approach (although already progeny-tested)

Material and Methods

• Data: aggregation of information on rams of interest

• Method: cross-validation

Learning population: 1998-2006
GBLUP: DYD + pedigree + SNPsPREDICTION
2007-2008
Pedigree+SNP
681

Material and Methods

- Quantifying accuracy of genomic prediction vs parent average
- DYD =>reference to assess accuracy of genomic prediction or parent average
- Correlation between DYD and GEBV (Rg) and between DYD and Parent average

• Hypothesis Rg >> Rb

Efficiency of genomic prediction accross traits

	Milk	Fat %	Prot %	SCS	Udder cleft	Teat Angle	Udder depth
Rb	0.39	0.49	0.53	0.41	0.46	0.44	0.43
Rg	0.45	0.57	0.59	0.45	0.53	0.50	0.47

- On average 14% higher correlations with genomic prediction
- Variation among traits and birth of year of validation rams
- Usually relative gain about 2 times higher for 2008 rams (1st evaluation) than 2007 rams (2nd evaluation), mainly due to Rb.

Effect of modifying the learning population

- Removing either ungenotyped rams (Rg1) (Duchemin et al.)
- or rams born before 2003 (Rg2)
- or closely related rams of validation rams (Rg3)

	Milk	%difference	SCS	%difference	Size of population
Rg	0.45		0.45		100%
Rg1	0.42	-9%	0.44	-3%	52%
Rg2	0.40	-11%	0.42	-9%	40%
Rg3	0,33	-27%	0,37	-18%	85%

- In agreement with with Habier *et al.*
- =>necessity of maintaining performance recording
- Moderate positive impact of adding ungenotyped or eldest rams

Comparison with dairy cattle results

Correlations	Lacaune	Montbéliarde (France) (1)	Holstein (France) (1)
	Milk	Milk	Milk
Rb : Blup-DYD	0.39	0.28	0.38
Rg : G-blup-DYD	0.45	0.42	0.56
Relative gain	15 %	50 %	47%
Reference population	2,567	1,172	3,940

•Smaller relative gain :

- Better parent average correlations (Rb)
 - > larger size of contemporary groups (flocks) and lack of preferential treatment
- Too much information (DYD in 2010) included regarding 2007/2008 rams

(1)Bayes $C\pi$ vs GBLUP, PLS regression, Sparse PLS and Elastic Net: Genomic Selection in French dairy cattle, C. Colombani et al.

Conclusions and perspectives

- Performances and genomic evaluation
 - Need to maintain performance recording to continously update reference population(sires of sons needed)
 - Compared to cattle, smaller relative gain in correlation for genomic prediction
 - Better parent average correlations in sheep : size of contemporary groups and lack of preferential treatment in sheep ?
 - Too much information included relative to 2008/2007 rams in 2010?
 - Further methodological development needed (Bayes, non-parametric)
- Application
 - potential gain on generation interval : smaller in sheep / cattle
 - relative gain in accuracy : appears smaller in dairy sheep compared to dairy cattle...may be partly due to validation test to be improved (design of reduced data set)

Conclusions and perspectives

Savings

Avoiding progeny-testing

AGRICULTURE

Costs

•High selection intensity

at birth

Acknowlegements

financial support provided by

- ANR and ApisGene (SheepSNPQTL project) managed by INRA

- and FUI, Midi-Pyrenées Région, Aveyron & Tarn departements, and

Rodez town (Roquefort'in project) managed by Confédération Générale de Roquefort.

- technical cooperation/support from
 - genotyping platform Labogena, Jouy-en-Josas, France
 - bio-informatics support of Sigenae, Toulouse, France computing facilities of CTIG, Jouy-en-Josas, France

 - bio-informatics platform Genotoul, Toulouse, France
- collaboration with the 7 partners of Roquefort'in project

