Dose and form of vitamin D for sows: Impact on bioavailability, performance and bone status markers

Charlotte Lauridsen, Ulrich Halekoh, Torben Larsen and Søren Krogh Jensen

EAAP-stavanger
1. september, 2011

Background

- In swine nutrition, little is known regarding vitamin D in relation to reproduction and health
- Official vitamin D recommendation for sows during gestation and lactation is not based on scientific reports
- Recommendations ranging from 200-1,000 IU vitamin D/kg feed

Purpose of experiment

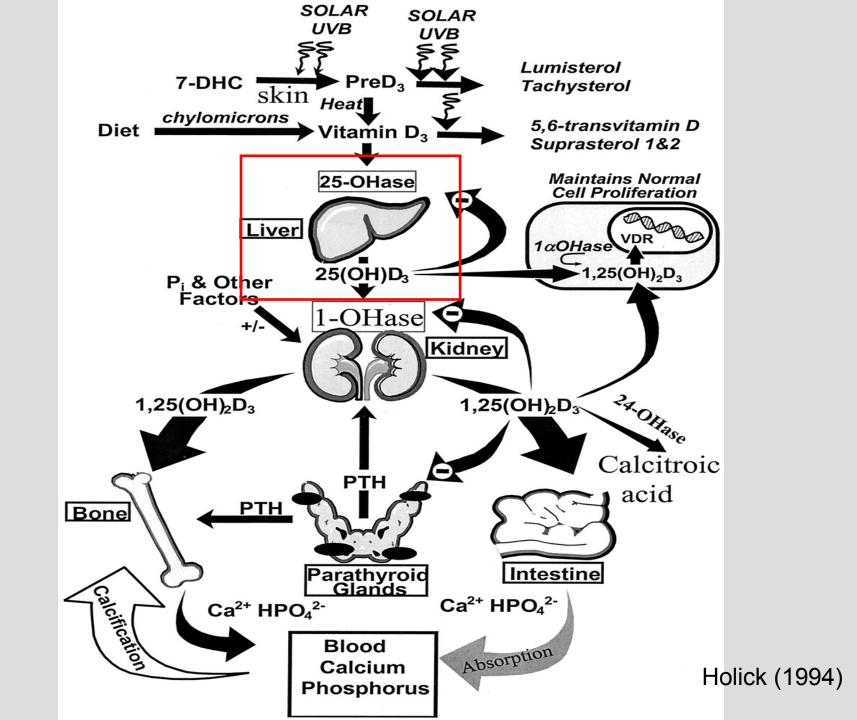
- To investigate the nutritional benefits of vitamin D for reproducing female pigs with special emphasis on:
- Bioavailability when using two sources of vitamin D
- Performance
- Early reproduction (poster abstract #10627)
- Bone status markers
- Transfer of vitamin D to the progeny

Animals

 Experiment 1: Prepubertal gilts, DL*DY, N=160, mated with mixed sperm.

Duration: Dietary treatments started from first estrus, mating 21 d thereafter, slaughter on d 28 of gestation

- Experiment 2: Sows parity 2,3,4,or 5, DL*DY, N=160, mated with a Duroc boar (same within each block)
- Duration: Dietary treatments started on the day of artificial insemination and lasted until weaning


Dietary treaments

8 dietary treatments arranged in a complete block design with 20 blocks:

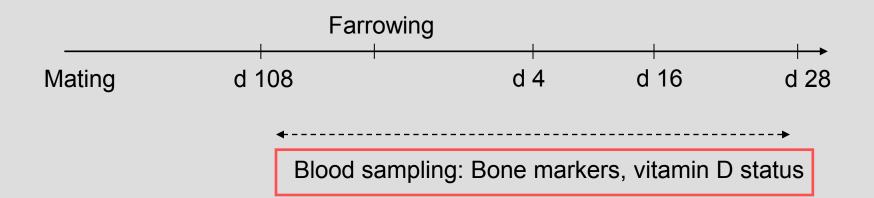
- Two sources of vitamin D: vitamin D₃
 ("D₃") and 25-hydroxy vitamin D₃
 ("HY·D", provided as Hy•D® by DSM Nutritional products)
- Four doses:

D₃: 200, 800, 1400 and 2000 IU/kg feed

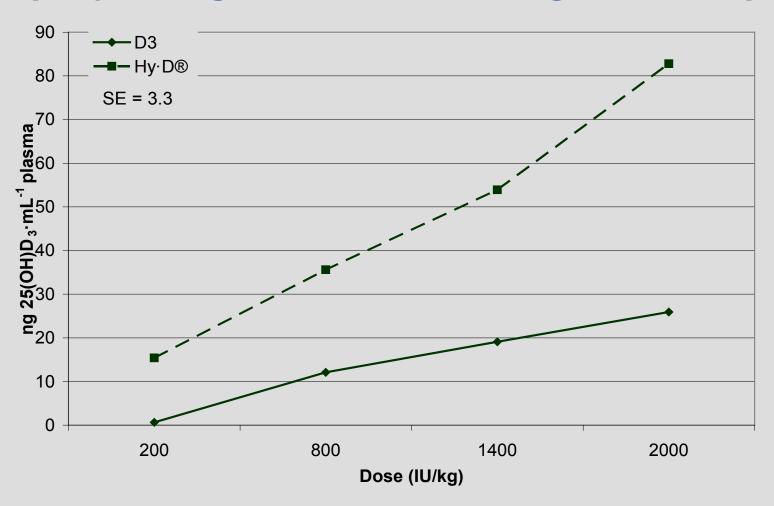
HY·D: 5, 20, 35, and 50 μg/kg feed

Vitamin D concentration in feed

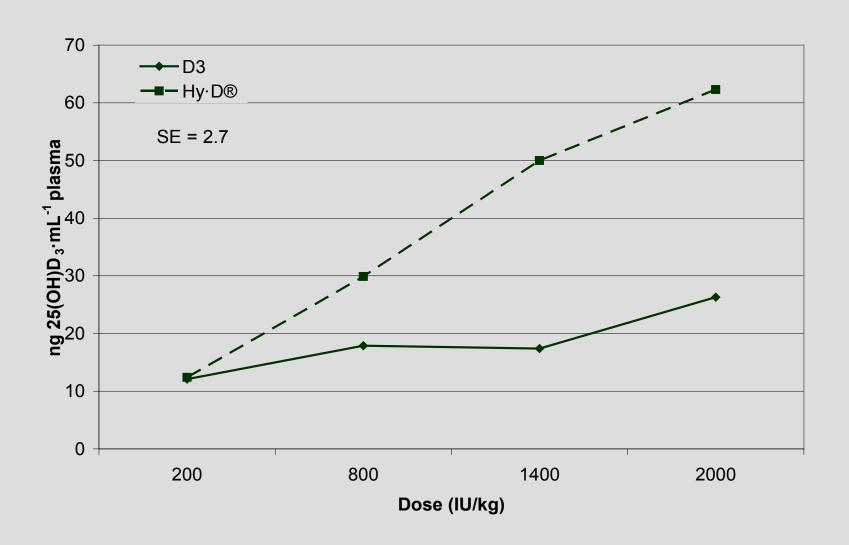
Dietary treatment	N samples	Analyzed vitamin D ₃	Analyzed 25(OH)D ₃
		Mean (SD), IU•kg⁻¹	Mean (SD), IU kg ⁻¹
200 Vitamin D ₃	4	197 (56)	< 200
800 Vitamin D ₃	4	712 (31)	
1400 Vitamin D ₃	3	1267 (115)	
2000 Vitamin D ₃	3	1897 (95)	
200 25(OH)D ₃	4	0	200 (40)
800 25(OH)D ₃	4		920 (40)
1400 25(OH)D ₃	4		1360 (120)
2000 25(OH)D ₃	4		2120 (640)

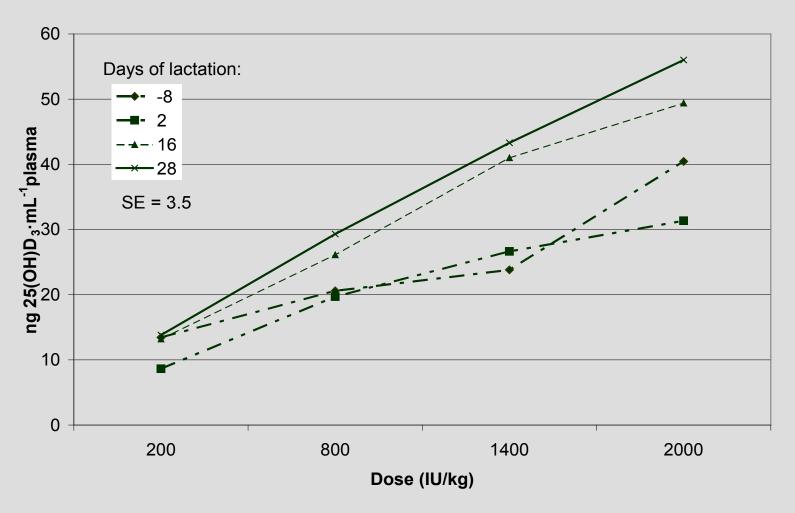

Materials and methods

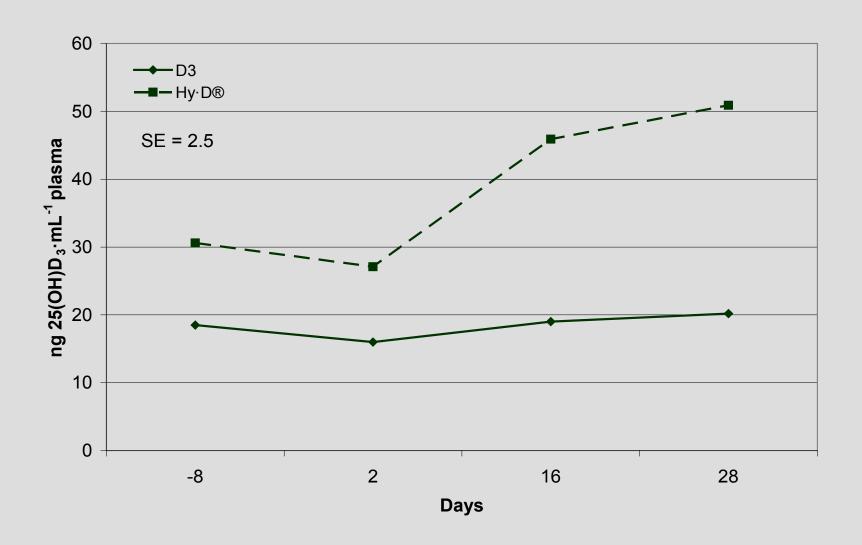
Experiment 1: gilts


Mating d 28

Slaughter:
Blood
Reproductive organs
Bones (metacarpalis)


Experiment 2: sows and piglets


Bioavailability of vitamin D (exp. 1, gilts on d 28 of gestation)


Bioavailability of vitamin D Exp. 2: Sows (Dose*form)

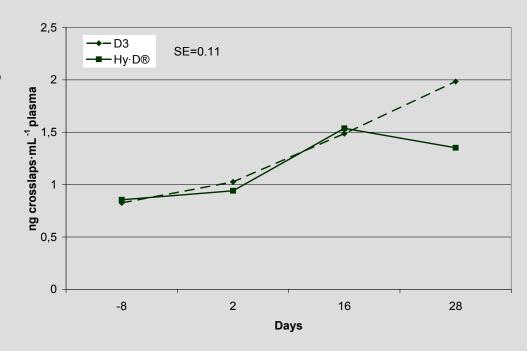
Bioavailability of vitamin D Exp. 2: Sows during lactation (day*dose)

Bioavailability of vitamin D Exp. 2: Sows (Day * form)

Performance

- Reproductive performance not affected
- Feed intake of sows: Interaction between parity*form*dose (0.009)
- Body weight changes not affected
- Number of live born piglets, and litter performance until weaning not affected
- # still born piglets less (P=0.03) with larger doses of vitamin D!

Bone status markers Exp. 1: gilts


- Ultimate strength of bones and content of ash higher with D₃ than with HY·D
- No influence on plasma bone status markers (alkaline phosphatase, Ca, P)

Bone status markers Exp. 2: sows and piglets

Lactation day rather than dietary vitamin
 D influenced concentration of osteocalcin,
 Ca, P, and inorganic P, bone related

enzymes

However, forms influenced crosslaps

Transfer of vitamin D to the progeny (Exp. 2: Piglets)

- 25(OH)D₃ only detectable in 154 out of 576 samples (obtained at day 4, 16 and 28 of age)
- Low concentration: 4.3 (2.8) ng/mL plasma
- Lowest concentration in piglets suckling sows fed 200 IU D3, and highest in piglets suckling sows fed 50 µg HY·D
- 3.34 (2.11), 4.16 (2.79) and 4.84 (3.05) ng
 25(OH)D3/mL plasma for piglets aged 4, 16 and
 28 days

Conclusion (dose)

- Although results of the present study did not show any major differences between dietary treatments in terms of performance, reproduction and bone status markers of gilts and sows,
- the lower number of still born piglets and the higher vitamin D status may indicate a dietary level around 1,400 IU vitamin D to be recommendable for reproducing swine.

Conclusion (form)

• The potency of the dietary Hy•D® in relation to vitamin D₃ depended on the level tested but above 200 IU, Hy•D® was more bioavailable than the vitamin D₃, and could as such been considered as an equivalent or even more advantageous source of vitamin D.

Conclusion (bioavailability)

- Irrespective dietary dose and form of vitamin D for the sows, very little vitamin D was transferred to the progeny
- Suckling piglets without exposure to sunlight may need a vitamin D supplement (?)

Conclusion (bone status markers)

- Difference in absolute numbers (where effect of dietary vitamin D was found) probably not physiologically relevant
- Lactation stage of sows and age of the suckling piglets influenced the measured bone status markers.

JOURNAL OF ANIMAL SCIENCE

The Premier Journal and Leading Source of New Knowledge and Perspective in Animal Science

Reproductive performance and bone status markers of gilts and lactating sows supplemented with two different forms of vitamin D

C. Lauridsen, U. Halekoh, T. Larsen and S. K. Jensen

J Anim Sci 2010.88:202-213. doi: 10.2527/jas.2009-1976 originally published online Sep 25, 2009;