

On-farm cow mortality in Swedish dairy herds

Karin Alvåsen EAAP 2011

> Swedish University of Agricultural Sciences Department of Clinical Sciences karin.alvasen@slu.se

On-farm mortality

= euthanasia and unassisted death

- Increasing mortality indicates sub-optimal health and welfare
- Causes financial losses

Observed mortality in other countries

US mortality rates¹ 1996 3.8% 2002 4.8% 2007 5.7%

Danish mortality rates² 1990 2.0% 1999 3.5% 2008 5.8%

¹USDA, 2007 ²Thomsen *et al.*, 2005

Photo: Peter T. Thomsen

Swedish dairy production

- Big structural changes in the dairy sector
- More efficient technology, increased average milk yield and herd size, high quality feeds
 - man hours per cow decreases
- No of herds with >300 cows has doubled during the last 4 years
- Over 500 herds in AMS (>10%)

Swedish Dairy Association, 2010

Hypothesis

There are systematic differences in mortality between herds under Swedish conditions

Photo: M. Högberg

Quantify the development of cow mortality in Swedish herds during 2002-2010

Evaluate geographical and seasonal trends

Identify risk factors for mortality in dairy cows on herd level

Data from the Swedish milk recording scheme

Herd averages

- Breed
- Calving interval
- Milk yield
- Herd size
- Location

swedish dairy association

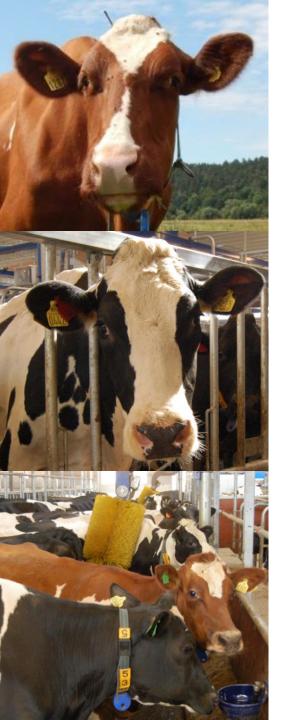
Data from the Board of Agriculture

- Central register of Bovine animals managed by the Swedish Board of Agriculture
- Farmers have to report movements for cows leaving the farm
 - 2 = Sales/Export
 - 3 = Slaughter
 - 4 = Temporary out
 - 6 = Home slaughter
 - 7 = Euthanasia/died unassisted (to destruction plant)
 - 8 = Euthanasia/died unassisted (not to destruction plant)

 Data from all herds enrolled in the Swedish milk recording scheme (incl. 84% of all Swedish dairy cows)

• Study period:

September 1st 2002 to August 31st 2010


Data editing

Data for analysis included:

- Herds with \geq 20 cows
- Yearly mortality rate < 40 events per 100 cow-years

6898 herds

Variables of interest

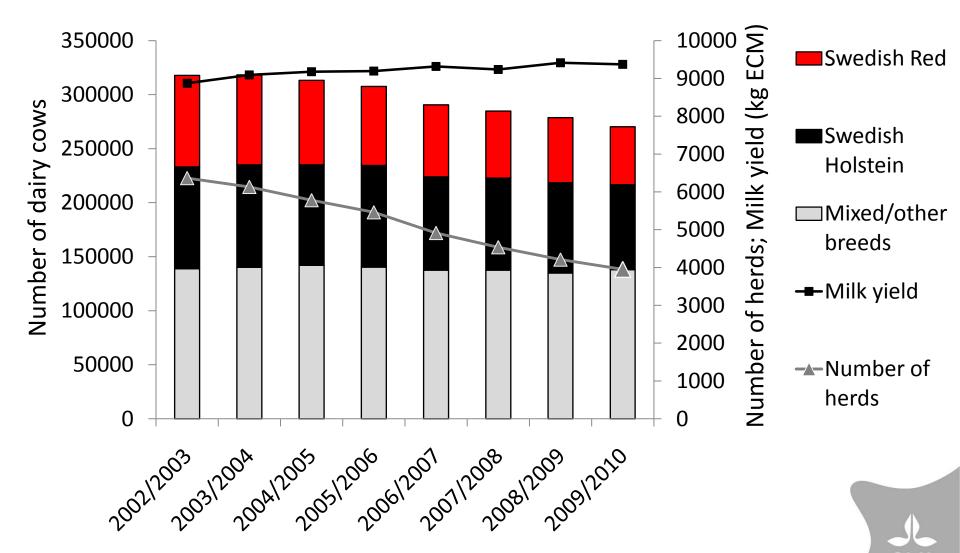
- Year 8 classes, one for each year
- **Breed** 3 classes, >80% of the herd pure-bred
- Calving interval 4 classes, after quartiles
- Region 6 classes
- Pasture period 3 classes
- Herd size 4 classes
- Season 3 classes
- Milk yield

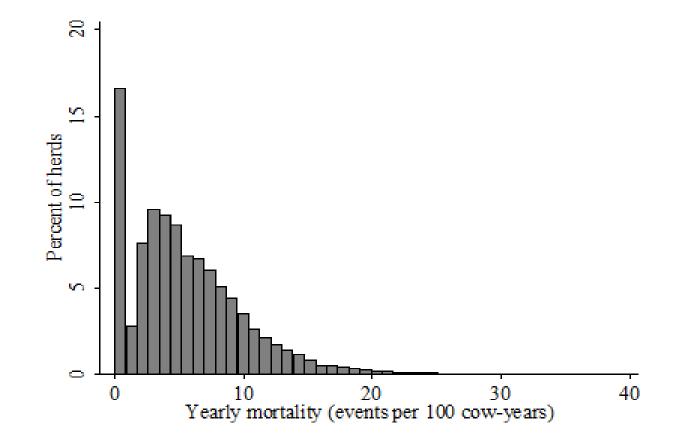
4 classes, after quartiles

Collinearity spearman's rank-order correlation coefficients

Statistical analysis

- Negative binomial regression over-dispersed count data
- Outcome = number of euthanised and dead cows per season and year (123659 herd-year-seasons)
- Exposure variable = Herd size
- Adjusted for clustering within herd

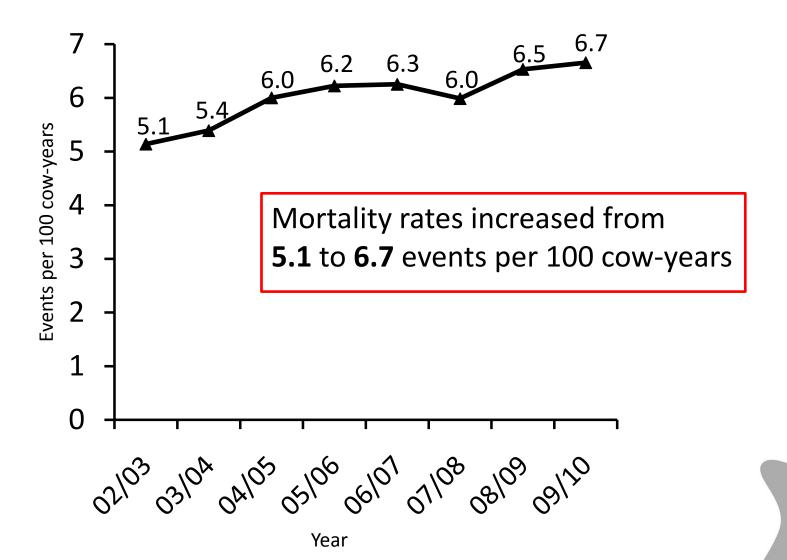


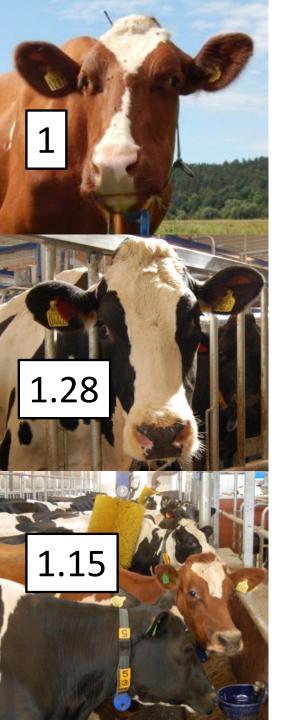

Results & Discussion

	current				memory usag	•	
settable	value		tion		(1M = 1024k)		
		-				_	
set maxva			riables a	llowed	1.947M		
set memor set matsi			ta space S vars in	models	1,000.000M 1.254M		
See macsi	20 400		5 vars m	liouers	1.2,744		
					1,003.201м		
	xi: nbred	ı sum seasor	sa i.mk	o seas i.	kontar i.k ed	m i.ras i.re	gion i.k_ki, ///
>	exp(hrdsi	ze) nolog o	luster (ppn) irr			
i.mko_seas	_Imko_sea				_Imko_seas_1		
i kontar	_Ikontar_		(natura]	ly coded;	_Ikontar_203	omitted)	
i.k_ecm	Ik ecm 1	-4	(natura)	IV coded:	<u>Ik ecm 1 on</u>	itted)	7
i.ras i.region							
i.k_ki							
> d)							
Negative binor	mial					± :	
Dispersion	-1 <i>i</i> ha	Jesc	ribt	ive	statis	TICS	
Log pseudolik	erino		· · P ·				
sum_season~a							
- 1		A I					
_Imko_sea~12	귀	Analı	VSIS				
_Imko_sea~13 _Imko_sea~21		MIMI	, 515				
Imko_sea~21 _Imko_sea~22	1						
_Imko_sea~31	1						
_Imko_sea~32							
_Imko_sea~33	1.00702		17.21	0.000	1 504606	1.702004	
_Imko_sea~41 _Imko_sea~42	1.690793 1.720045	.0504844 .0499771	17.59 18.67	0.000 0.000	1.594686 1.624828	1.792694 1.820841	
	1.891036	.0552273	21.82	0.000	1.785832	2.002438	
_Ikontar_304	1.035426	.0127392	2.83	0.005	1.010757	1.060698	
_Ikontar_405	1.148003	.0146467	10.82	0.000	1.119652	1.177072	
_Ikontar_506	1.168574	.0148576	12.25	0.000	1.139814	1.198061	
_Ikontar_607	1.17351	.0157473	11.92	0.000	1.143048	1.204784	
_Ikontar_708 _Ikontar_809	1.097819 1.200144	.0152297 .0169256	6.73 12.94	0.000 0.000	1.068372 1.167425	1.128079 1.233781	
_Ikontar_910	1.217481	.0176223	13.60	0.000	1.183427	1.252515	
Ik_ecm_2	.9652272	.0146672	-2.33	0.020	.9369039	.9944068	
_Ik_ecm_3	.9035707	.0150321	-6.10	0.000	.8745835	.9335187	
_Ik_ecm_4	.8800205	.0155392	-7.24	0.000	.8500852	.91101	
_Iras_2	1.275623	.024217	12.82	0.000	1.229031	1.323982	
_Iras_9	1.154261 1.099625	.0178741 .0270736	9.26 3.86	0.000 0.000	1.119755 1.047822	1.189831 1.153989	
_Iregion_2 _Iregion_3	.9902547	.0240303	-0.40	0.687	.9442587	1.038491	
_Iregion_4	1.045766	.0360005	1.30	0.194	.9775337	1.11876	
_Iregion_5	1.035055	.0356055	1.00	0.317	.9675696	1.107246	
_Iregion_6	1.126725	.03246	4.14	0.000	1.064867	1.192176	
_IK_ki_2	1.054636	.0137255	4.09	0.000	1.028075	1.081884	
_Ik_ki_3	1.141967	.0169801	8.93	0.000	1.109167	1.175737	
_Ik_ki_4 hrdsize	1.262448 (exposure)	.0210891	13.95	0.000	1.221783	1.304466	
in usize	(exposure)						
/lnalpha	-1.484613	.0334651			-1.550203	-1.419023	
alpha	.22659	.0075829			.2122048	.2419504	

SLU

Number of cows in different breeds, herd average milk yield per cow and total number of herds





Distribution of mortality events per 100 cow-years in 6,898 Swedish dairy herds in the period September 2002 to August 2010

SLU

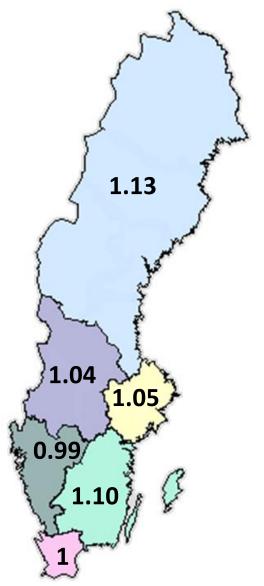
Incidence rate of euthanized and dead cows in 6,898 dairy herds during September 1st 2002 to August 31st 2010

Mortality rates in different breeds

- Differences in size and conformation
- SH have high mortality in previous studies¹
- SH higher incidence of common production diseases²
- SH higher risk of culling compared to SR³

¹ Hare *et al.* (2006); Thomsen *et al.* (2006); Raboisson *et al.* (2011) ² Nyman *et al.* (2007) ³ del P. Schnider *et al.* (2007)

Mortality rates in different calving intervals

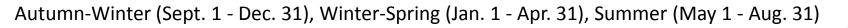

CI (days)	MR	
< 389	1	
389 - 403	1.05	
404 – 421	1.14	
≥ 422	1.26	

- Calving = Critical period
- 30-65% of all mortality occur during the first month of lactation¹
- Highest rates first few days after calving

¹Thomsen *et al.* (2004); Milian-Suazo *et al.* (1988); Menzies *et al.* (1995)

Mortality rates in different regions

Pasture	MR
2 months	1
3 months	0.94
4 months	0.90


Herd size x Season

Larger herd size = higher mortality

Smaller effects of season when herd size increases

Mortality rates in different seasons: Summer higher risk Autumn-Winter reduced risk

Herd size x Season

- Generally less time to spend on individual cows
- Separate treatment becomes more complicated
- Difficulties with pasture management

- A negative effect of the previous indoor-period?
- Increased stress on pasture?
- Less frequent observation at pasture?

Pasture is associated with reduced mortality in Danish herds¹

¹Burow et al. (2011); Thomsen et al. (2006)

Mortality rates in different milk yields

kg ECM	MR
< 8525	1
8525 – 9290	0.97
9291 – 9980	0.90
≥ 9981	0.88

A matter of management!

Conclusions

- On-farm cow mortality has increased over the last decade in Sweden
- Higher mortality associated with: long calving intervals and low milk yields Holstein breed large herd size and during Summer season
- There were regional differences

THANK YOU ALL FOR YOUR ATTENTION!

Thanks to my supervisors Ulf Emanuelson Peter T. Thomsen Charlotte Hallén Sandgren Marie Jansson Mörk

Y CARL BE AND A DOG

Swedish Farmers' Foundation for Agricultural Research Stiftelsen Lantbruksforskning