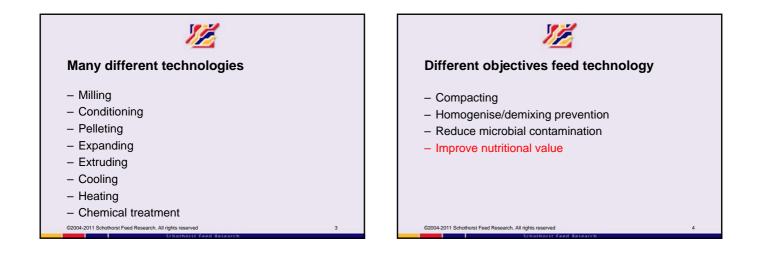
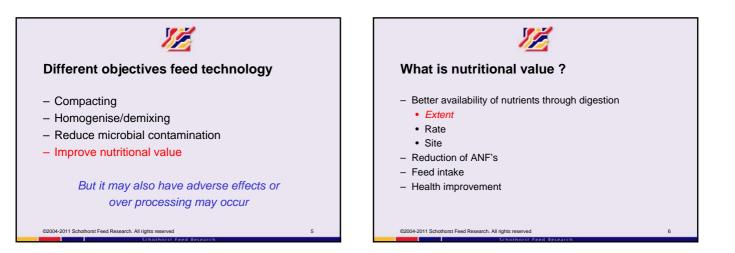


Increasing nutritive values of raw materials and compound feed by feed technology


Dr.Ir. P.J. van der Aar Dr.Ir. J. Doppenberg


Schothorst Feed Research

 Variation in nutritional quality caused by production

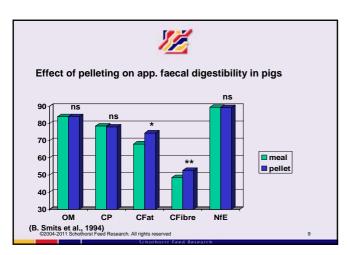
©2004-2011 Schothorst Feed Research. All rights reserved

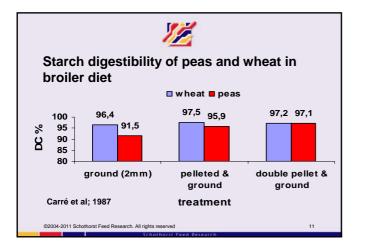
Main effects of technology on digestion

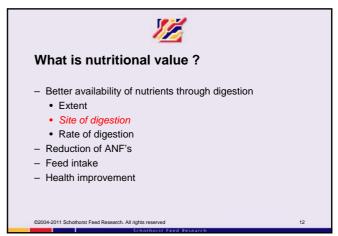
- Gelatinisation of starch: water, pressure, heat
- Making nutrients better accessible for digestive enzymes
- Particle seize reduction

©2004-2011 Schot

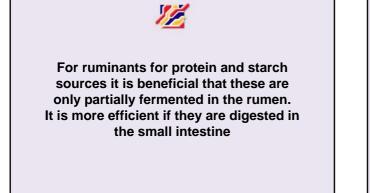
- Denaturation of antinutritional factors

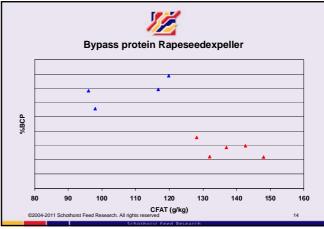

horst Feed Research. All rights reserved

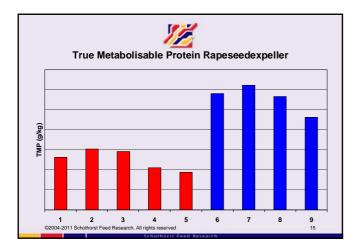

Effect of pelleting on digestibility (broilers, grower phase)

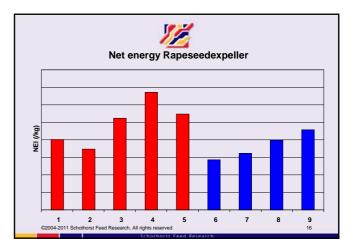

D.C. (%) Protein	D.C. (%) Fat	M.E. (kcal/DM)
85.2	84.5	3458
86.5	90.2	3542
<u>. </u>		
	Protein 85.2	Protein Fat 85.2 84.5

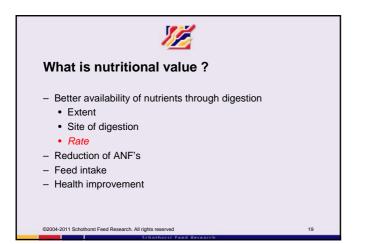
©2004-2011 Schothorst Feed Research. All rights reserved

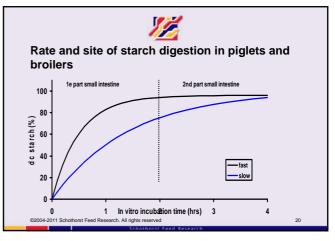


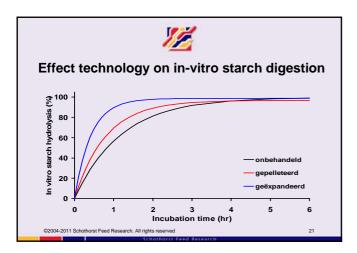

Effect of pelletin rapeseed meal ir	-	-	ility of	
	Meal	Pellets	rel.difference	
protein digestion (%)	79	82	+ 4%	
fat digestion (%)	68	76	+ 12%	
fibre digestion (%)	39	47	+ 20%	
Normally for feeds 2 – 4	%	Schothors	st Feed Research (VLB-32)	
©2004-2011 Schothorst Feed Research. All ri	ghts reserved			10

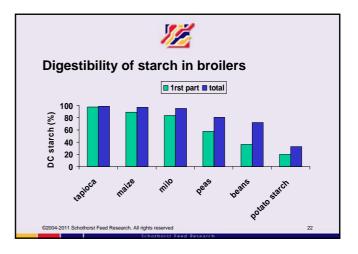


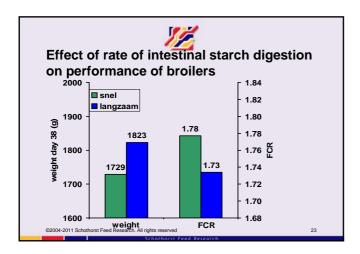


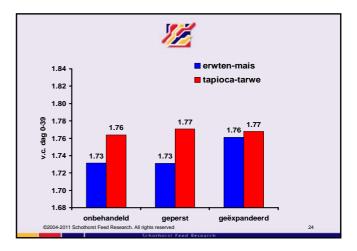


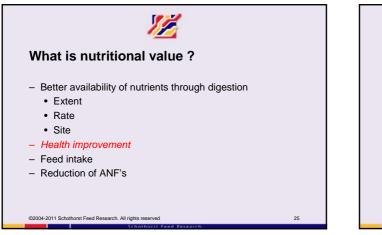


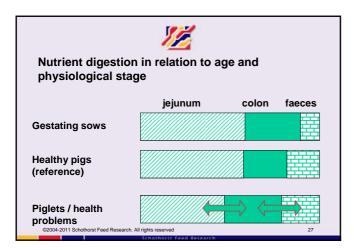

Effect production proce bypass of starch	ess on rumen	
	Decrease in bypass	
	(absolute %)	
pelleting	12	
double pelleting	16	
BOA / pelleting	17	
TMC / pelleting	5	
expander / pelleting	13	
©2004-2011 Schothorst Feed Research. All rights reserved		17

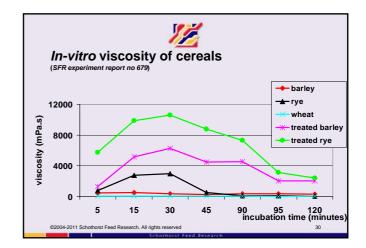

Effect of sor digestibility	ghum particle s	size on	
	rollermill (course particles)	hammermill (fine particles)	-
ileal starch digestibility	72 %	86 %	-
faecal starch digestibility	96 %	98 %	

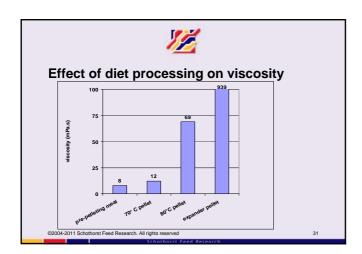




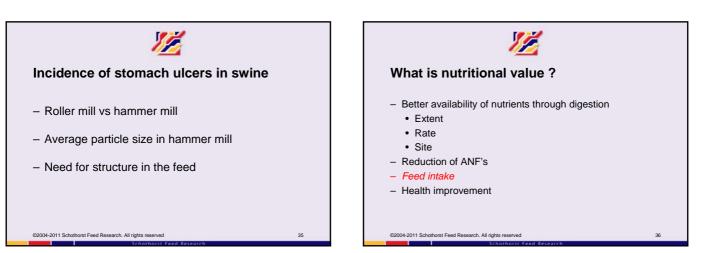








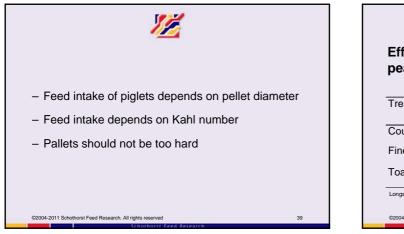
	f fineness on p after weaning			
pigioto t				ksv
		fine	coarse	
week 1-2	intake	314	343	23
	growth	235	261	22
	fcr	1.35	1.32	0.05
week 3-4	intake	806	810	44
	growth	537	523	31
	fcr	1.49	1.55	0.04

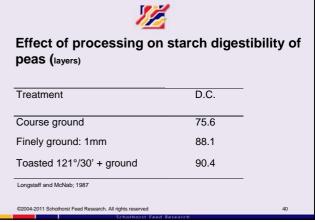

Effect of ea , 20 ⁻		tment o	💋 n visco	sity (Lunc	Iblad
	Mash	Pell 47	Pell 90	Expanded	Extruded
Viscosity	38	36	41	94	315
©2004-2011 Schot	horst Feed Resear	ch. All rights reserve	d		32

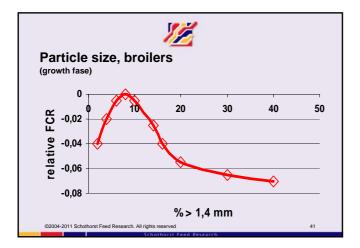
Effect of treatment of feed of piglet diets (Lundblat e.a., 2011)

	Mash	Pell 47	Pell 90	Expanded	Extruded
0-13					
gain	287	289	288	287	328
G/F	0.94	1.01	1.11	1.06	1.17
14-36					
gain	503	524	510	510	511
G/F	0.71	0.76	0.79	0.74	0.78
©2004-2011 Sc	hothorst Feed Rese	arch. All rights reserv	red		33

Effect of particle production and s (fattening pigs 25 - 110 kg	stomach		on	
	fine	medium	course	
% > 1.4 mm (meal)	5	15	24	
growth (g/d)	886	892	892	
feed conversion	2.49	2.52	2.55	
intake (kg/d)	2.19	2.22	2.26	
stomach ulcer	2.65	2.47	2.36	
SFR report 2001				
©2004-2011 Schothorst Feed Research. All r	ights reserved			34

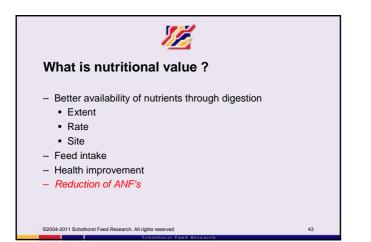



37

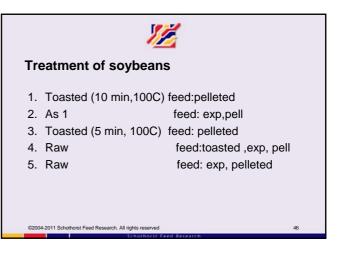

12						
Effect of pellet diameter on feed intake of growing rabbits (Aveux e.a. 2000)						
Dye	2.5X25	3.5X45	5.0X55			
Feed intake						
Day 1-21	111.9	113.5	119.7			
Day 22-35	161	161.1	157.5			

©2004-2011 Schothorst Feed Research. All rights reserved

Effect of pellet quality on piglet performance Hardness 6,2 7,8 9,4 6,2 Diameter 3,4 3,4 3,4 2,6 Growth 382 363 350 354 FCR 1,51 1,51 1,49 1,51 Feed intake 577 546 520 535 ©2004-2011 Schothorst Feed Research. All rights res



16							
Effect of particle size distribution (layers, week 22-41, ISA-Brown, 1996)							
Avg Particle size (mm)	1.32	1.60					
Intake (g/d)	111.3	112.5					
F.C.R.	2.07	2.08					
Laying %	92.4	93.1					
Egg mass (g/d)	53.7	54.4					
circ. 1997/11							
2004-2011 Schothorst Feed Research. All rights reserve	d	42					



Effect of dehu	lling Vicia Fa	ıba beans	
	tannins	tryp inhibitors	
	(g/kg)	(g/kg)	
Vicia faba beans			
Whole bean	10.4	0.61	
dehulled	5.6	1.8	
hulls	45		

Effect of pelleting and dehulling on digestibility of Vicia Faba beans

	ср	cfat	cfiber	OM	NE
normal					
mash	66.8	50.7	7.1	72.1	7.9
pelleted	74.1	71.4	11.8	76.1	8.3
dehulled					
mash	81.5	65.3	59.2	89.4	9.7
pelleted	80.7	68.9	45.8	89.4	9.7
©2004-2011 Schothorst Feed Res	earch. All rights reserv	red			

Effect of treatment of soybeans in broilers (21 days)								
weight	816	837	804	803	500			
Feed conversion	1.43	1.44	1.46	1.52	1.86			
Feed intake	1106	1140	1111	1154	848			
Litter score	6.4	6.4	6.7	6.6	6.8			
©2004-2011 Schothorst Feed Research. All rights reserved								

12									
Table 7. Effects of heat treatment on amino acid concentration									
and digestibility of soybean meal in poultry.									
Auto calving time	Concentration, %								
(minutes)	Lysine	Methionine	Cystine	Threonine					
0	3.27	0.7	0.71	1.89					
20	2.95	0.66	0.71	1.92					
40	2.76	0.63	0.71	1.87					
	Digestibility, %								
0	91	82	86	84					
20	78	69	86	86					
40	69	62	83	80					
	Digestible amino acid concentration, %								
0	2.98	0.57	0.61	1.59					
20	2.30	0.46	0.61	1.65					
©20040011 Schothorst Fe	ed Researth,90 rights reserv		0.59	1 450					

Conclusions

©2004-2011 Schot

- Technology can improve the nutritional value of feed.
- The benefit of technological treatment depends on the feedstuff and on the objective.
- Due to the variation in effects treatment of feedstuffs is preferred over the treatment of complete feeds.

horst Feed Research. All rights reserved

©2004-2011 Schothorst Feed Research. All rights reserved

- Technology is beneficial for digestibility especially of oil seed meals and feedstuffs containing ANF's.
- Technological treatment is not always beneficial.
 - Over processing protein sources
 - Reduction rumen bypass of starch
 - Health related aspects : ulcers, structure in ruminants, piglets

©2004-2011 Schothorst Feed Research. All rights reserved

The choice for technology to be used should be an integrated decision. In order to benefit more from the possibilities of technological treatments nutritionists should have an early pro-active attitude towards technologists and should set requirements for feed factors affected by technology.

51