Association between Cholecystokinin Type A Receptor Gene Haplotypes and Growth Traits in Hinai-dori Chicken Cross

Kazuhiro Rikimaru^{1,2}, Megumi Komatsu¹, Keiichi Suzuki², Yoshinobu Uemoto³, Hisato Takeda⁴, Hideaki Takahashi⁴

¹Livestock Experiment Station, Akita Prefectural Agriculture, Forestry, and Fisheries Research Center, ²Graduate School of Agricultural Science, Tohoku University, ³National Livestock Breeding Center, ⁴National Institute of Livestock and Grassland Science

INTRODUCTION

The Hinai-dori is a breed of chicken native to Akita Prefecture, Japan. To identify QTLs associated with growth traits in the Hinai-dori breed, an F_2 resource population produced by crossing low- and high-growth lines of the breed was analyzed. We identified quantitative trait loci (QTL) for body weight (BW) at 10 and 14wk and average daily gain (ADG) between 4 and 10wk and between 10 and 14wk in a common region on chromosome 4. We focused on the cholecystokinin type A receptor (*CCKAR*, chr 4: 75.6Mb) because it has also been identified as a candidate gene for human obesity. In this study, we genotyped polymorphisms of the *CCKAR* gene and investigated its association with growth traits in a Hinai-dori F_2 intercross population.

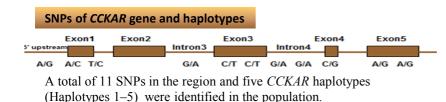
MATERIALS AND METODS

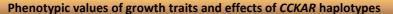
Hinai-dori breed

High-growth line

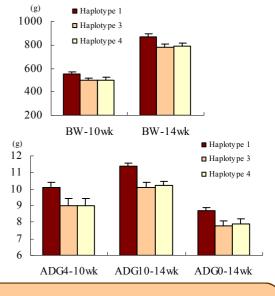
Identification of CCKAR haplotypes

The nucleotide sequences of the five exons of *CCKAR* in the parent individuals were determined by PCR amplification followed by direct sequencing to determine nucleotide variance of the gene in the resource family. Five PCR primers were designed to amplify the five exons of *CCKAR* and the PCRs were performed. The *CCKAR* gene haplotypes in the F_2 intercross population were then identified.


Hinai-dori population and phenotype


 F_1 chickens were produced by crossing three cocks from a low-growth line with nine hens from a high-growth line. Body weight was measured at 4 weeks (BW-4wk), 10 weeks (BW-10wk), and 14 weeks(BW-14wk) of age. Average daily gain between 0 and 4 weeks of age (ADG 0–4wk), between 4 and 10 weeks of age (ADG 4–10wk), between 10 and 14 weeks of age (ADG 10–14wk), and 0 and 14 weeks of age (ADG 0–14wk) was calculated from BW at each week of age.

Statistical analysis


To examine the effects of CCKAR gene, a mixed-inheritance animal model was used to evaluate the effects of CCKAR haplotypes by using QxPak software (Perez-Enciso and Misztal, 2004).

Effects of CCKAR haplotypes on the growth traits

					\sim		
Phenotypic values					Haplotype 1	Haplotype 3	3 Haplotype 4
Trait	n	Mean ± SD	LRT	P-value	Mean ± SE	Mean ± SE	Mean ± SE
BW-4wk (g)	417	231.1 ± 38.3	1.5	n.s.			
BW-10wk (g)	418	960.6 ± 163.5	36.6	5.7×10 ⁻⁸	548 ± 17.0	497 ± 18.2	502.7 ± 18.9
BW-14wk (g)	418	1467 ± 260.7	57.7	1.9×10 ⁻¹²	867 ± 23.2	779 ± 24.8	790.0 ± 25.7
ADG0-4wk (g/day)	417	5.2 ± 1.0	1.5	n.s.			
ADG4-10wk (g/day)	417	17.4 ± 3.3	46.5	4.4×10 ⁻¹⁰	10.1 ± 0.3	9.0 ± 0.4	$6.8\ \pm\ 0.4$
ADG10-14wk (g/day)	418	18.1 ± 4.4	50.1	7.5×10 ⁻¹¹	11.4 ± 0.2	10.1 ± 0.3	7.1 ± 0.3
ADG0-14wk (g/day)	418	14.6 ± 2.7	57.5	2.2×10 ⁻¹²	8.7 ± 0.2	7.8 ± 0.3	3.3 ± 0.3
		dividuals wit	ith Haplotypes 2 were detected in the F2 population.				

CONCLUSIONS

A highly significant association was found between *CCKAR* haplotypes (Haplotype 1, 3, and 4) and growth traits (BW-10wk, BW-14wk, ADG4-10wk, ADG0-14wk, and ADG0-14wk).

CCKAR is a useful marker of growth traits and could be used to develop strategies for improving growth traits in the Hinai-dori breed.