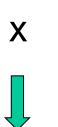

Fine Mapping of Quantitative Trait Loci for Pig Meat Quality Traits

F. Shumbusho, G. Le Mignon, Y. Billon, J.-P. Bidanel, N. Iannuccelli, **C. Larzul**

- 6344 QTL are reported for all traits in pig
- 4434 QTL for meat quality traits
- 945 (!) for drip loss

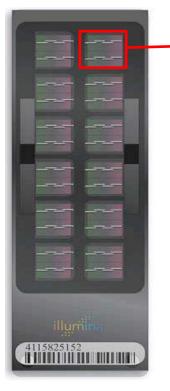
(PigQTLdb, August 2011)



- Very few QTL used in breeding schemes
 - Limited precision for location ?
 - Economic importance ?
- Need to refine QTL location
 - characterizing SNPs associated with quality traits using 60K chip

Experimental design

56 French Large White boars


98 French Large White sows

580 entire male piglets reared in INRA experimental farm till 110 kg

Phenotypes and Genotypes

- 15 traits:
- ADG
- Backfat Thickness
- Lean Meat Content
- Dressing %
- Water Holding Capacity
- 6 color measures
- •4 ultimate pH measures

64000 SNPs for 1 animal

(1 chip = 12 animals)

428 piglets and sires were genotyped.

Statistical analyses

Phenotypes were corrected for

- fixed effect of slaughter date,
- random effect of dam,
- weight at slaughter as covariate.

Genome-wide Association Study (GWAS)

To identify genomic polymorphisms associated with trait variation

Quality control

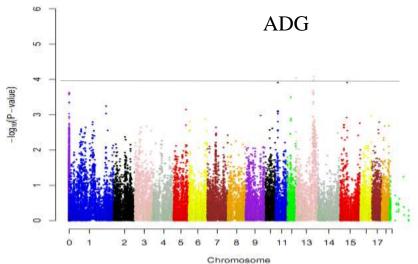
SNPs were excluded in analysis for:

- Genotype call rate below 95%
- Individual call rate below 90%
- Failing Hardy-Weinberg Equilibrium test (p <= 1e-05)
- Minor Allele Frequency (MAF) < 0.05</p>
- 42580 SNPs passed these filters

Genome-wide Association Study

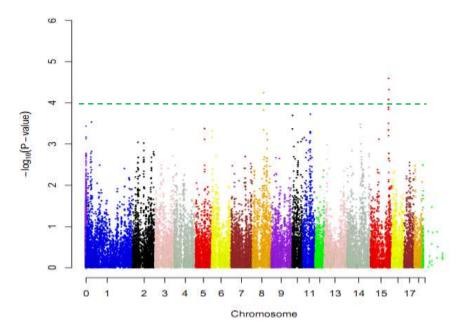
GRAMMAR-GC procedures in GenABEL

Fast and powerful method for the analysis of pedigreebased quantitative traits.


1st step: individual environmental residuals are estimated, using a Mixed Model.

2nd step: markers are tested for association with these familial correlation-free residuals with a rapid score method.

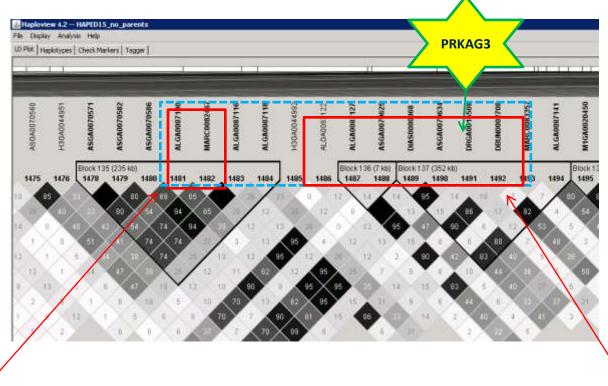
3rd step: Genomic Control is applied to correct the test statistics.


Results: growth and carcass

ADG: 4 QTL log₁₀(P-value) Most convincing = SSC13 BT: 5 QTL LMC: 2 QTL Most convincing = SSC11 Dressing %: 2 QTL Most convincing = SSC12

2 QTL, 1 on SSC15

SSC	SNP	Position (Mbp)
15	DRGA0015508	113.726097
15	ALGA0087340	116.735371
8	ASGA0039159	71.443924
15	ALGA0087116	113.451557
15	ALGA0087118	113.464523
	15 15 8 15	15 DRGA0015508 15 ALGA0087340 8 ASGA0039159 15 ALGA0087116


20 SNPs significantly affected 6 color and 18 SNPs affected pH measures.

SSC15 contained the largest number of SNPs affecting both groups of traits in general.

Distal part of SSC15

7 SNPs affected WHC, b* and pH24

WHC & b*

WHC, b* and pH24

- GWAS proved to be a quick method to detect all associated markers but the correct threshold for livestock data remains a challenge.
- Many pork quality QTL still segregate throughout the genome of French Large White pigs.
- SSC15 is important for WHC, colour and pH24 measures.
- Further analyses :
 - LDLA is believed to improve QTL estimates
 - Haplotypes effects

UE (SABRE, Q-Porkchains)