

Genome-wide mapping and SCD gene effects for fatty acid composition and melting point of fat in a Duroc purebred population

Uemoto, Y.¹, Nakano, H.², Kikuchi, T.¹, Soma, Y.², Sato, S.¹, Shibata, T.³, Kadowaki, H.³, Kobayashi, E.¹, and Suzuki, K.²

¹National Livestock Breeding Center, Odakura, Nishigo, Fukushima 961-8511, JAPAN (TEL: +81-248-25-2243, FAX: +81-248-25-2243, E-mail: y0uemoto@nlbc.go.jp)

²Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, JAPAN

³Miyagi Prefecture Animal Industry Experiment Station, Tamatsukuri-gun, Miyagi 989-6445, JAPAN

INTRODUCTION

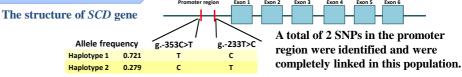
The fatty acid composition and melting point of fat are among the most important economic traits in pig breeding. The stearoyl-CoA desaturase (*SCD*) gene is located on SSC14, and is considered a candidate gene for fatty acid composition. We conducted whole-genome quantitative trait locus (QTL) analysis for fatty acid composition and melting point of inner and outer subcutaneous fat and inter- and intramuscular fat in a Duroc purebred population. We also performed positional candidate gene analysis to fine map the detected QTL on SSC14, to identify polymorphisms of *SCD* gene and to examine the effects of *SCD* gene on these traits.

MATERIALS AND METHODS

Duroc population and phenotype

The Duroc population used in this study had been selected on the basis of DG, LEA, BF, IMF (Suzuki et al., 2005).

The pigs were evaluated for fatty acid composition and melting point of 4 different tissues, and the number of pigs with phenotypes ranged from 479 to 521.


Trait		N	Average	SD	Trait	N	Average	SD			
Inner subcutaneous fat					Outer subcutaneous fat						
C14:0	%	515	1.55	0.41	C14:0 %	513	1.58	0.40			
C16:0	%	515	27.04	1.89	C16:0 %	513	25.28	2.05			
C16:1	%	515	2.04	0.69	C16:1 %	513	2.76	0.84			
C18:0	%	515	16.96	1.91	C18:0 %	513	13.89	1.70			
C18:1	%	515	42.86	2.47	C18:1 %	513	45.79	2.47			
C18:2	%	515	9.57	1.75	C18:2 %	513	10.59	1.72			
Melting poin	ıt C'	507	39.40	2.99	Melting point C'	507	34.67	3.19			
Intermuscular fat				Intramuscular fat							
C14:0	%	479	1.70	0.45	C14:0 %	521	1.53	0.28			
C16:0	%	479	27.12	2.13	C16:0 %	521	26.56	1.50			
C16:1	%	479	2.79	0.81	C16:1 %	521	4.48	0.87			
C18:0	%	479	15.43	1.91	C18:0 %	521	13.46	1.41			
C18:1	%	479	43.35	2.58	C18:1 %	521	48.38	2.16			
C18:2	%	479	9.57	1.76	C18:2 %	521	5.48	1.25			

Genome-wide mapping

A total of 129 markers distributed along the porcine genome were genotyped for all autosomes, and total map length was 2,544.7 cM with the average spacing of markers of 19.7 cM based on Haldane map functions.

We conducted a pedigree-based multipoint variance components approach to test for linkage between QTLs and the phenotypic values using a maximum likelihood method implemented in the SOLAR software (Almasy and Blangero, 1998) and LOKI software (Health, 1997), and the LOD score was estimated.

SCD gene polymorphisms

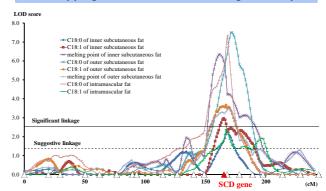
Fine mapping and Candidate gene analysis

A total of 19 microsatellite markers on SSC14 and SCD haplotype were genotyped in all pigs, and then used for fine map.

To examine the effect of *SCD* gene, a mixed-inheritance animal model was used to evaluate the effects of *SCD* haplotype by using QxPak software (Perez-Enciso and Misztal, 2004).

RESULTS

Summary of suggestive and significant QTLs


Trait	SSC P	osition	Marker interval ¹	LOD score	Trait	SSC Position		Marker interval ¹	LOD score
		(CIVI)					(cM)		
Inner subcutan					Intermu				
C14:0	9	0	SW21	1.45*	C16:0	6	42	SW2525	1.55*
	12	34	SW957	2.28*		8	32	SW2410 to S0098	
C16:0	2	165 S	WR2157 to SW1844	1.52*		10	38	SW767	2.33*
	11	90	SW1494	1.52*		15	117	SW1983 to SW111	9 3.14**
C18:0	2	99	SW1686 to SW776	1.46*	C18:0	14	70	SW857 to SW104	4 2.35*
	9	65 S	WR1848 to SW940	2.23*	C18:1	4	99	SW270 to S0067	1.66*
	10	73	SWC19	2.23*		6	152 5	SW1881_CA to SW322	2 1.96*
C18:1	10	73	SWC19	1.56*	C18:2	2	93	SW1686 to SW776	6 1.99*
	14	105	S0007 to SW761	2.08*		9	150	SW2093	3.02**
C18:2	4	38 F	XVL2754 to SW2409	1.79*		10	73	SWC19	1.67*
	6	189	SW2052	2.73**		14	70	SW857 to SW104	4 2.30*
	10	147	SW1991 to SW951	1.67*	Intramu	scular	fat		
	18	0	SW1023	1.90*	C16:0	4	123	S0067	1.71*
Melting point	14	102	S0007 to SW761	3.25**	C16:1	9	60	SWR1848	1.76*
Outer subcutar	neous fa	ıt			C18:0	2	77	SWR1445 to SW168	86 2.09*
C16:0	18	0	SW1023	1.53*		10	68	SW497 to SWC1	9 1.98*
C18:0	8	98	SW933	1.87*		14	99	S0007	5.78**
	14	102	S0007 to SW761	4.49**	C18:1	14	106	S0007 to SW76	1 3.43**
C18:1	14	100	S0007 to SW761	2.67**	C18:2	9	62	SWR1848 to SW940	0 1.77*
C18:2	4	8 F	XVL3115 to KVL2754	1.67*					
	11	84	SW1377 to SW1494	1.65*					
	18	0	SW1023	2.45*					
Melting point	14	102	S0007 to SW761	3.03**					

¹The primers of new microsatellite markers were described by Soma et al. (2011). *Suggestive linkage (LOD = 1.39), **Significant linkage (LOD = 2.54). ¹LRT = likelihood ratio test statistics.

²Additive and dominance effects were genotypic value of (H1I + H2H2)/2, respectively.

³Variance (%) = the proportion of additive genetic variance accounted for by the SNP effect of SCD promoter region.

Fine mapping on SSC14 and candidate gene analysis

Trait	LRT^1	P-value	Additive 6	errect	Dominance	variance	
Trait	LKI	P-value	Mean	SE	Mean	SE	(%)
Inner subcutaneou	s fat						
C18:0	21.5	2.2×10^{-5}	0.54	0.14	-0.11	0.18	9.9
C18:1	24.1	5.9×10^{-6}	-0.77	0.18	0.01	0.22	17.0
Melting point	52.7	3.5×10^{-12}	1.34	0.20	-0.05	0.25	22.3
Outer subcutaneou	s fat						
C18:0	52.4	4.1×10^{-12}	0.80	0.12	0.11	0.14	22.1
C18:1	36.4	1.2×10^{-8}	-0.90	0.16	-0.15	0.20	24.1
Melting point	48.0	3.8×10^{-11}	1.22	0.20	-0.10	0.25	27.1
Intramuscular fat							
C18:0	69.8	6.7×10^{-16}	0.69	0.10	-0.16	0.12	31.4
C18:1	38.7	3.9×10^{-9}	-0.78	0.16	0.21	0.19	30.5

CONCLUTIONS

Genome-wide QTL mapping

• A total of 10 QTLs with significant linkages and 30 QTLs with suggestive linkages for these traits were detected.

Fine mapping and Candidate gene analysis

- Two SNPs (g.-353C>T and g.-233T>C) in the promoter region of the SCD gene were identified and completely linked.
- Especially, a significant association was found between SCD gene and C18:0, C18:1 and melting point of fat.
 - The SCD gene have a strong effect for fatty acid composition and melting point of fat.

