Genomic Selection: The Bulmer-effect,

and prospects with small reference populations

Ilse van Grevenhof

Animal Breeding and Genomics Centre

Piter Bijma Johan van Arendonk

Large ref. pops. are required for high accuracy

This is not always feasible

- Traits that are difficult/expensive to record
 - Disease-resistance
 - Methane emission
 - Meat quality
 - Osteochondrosis (bone disease in horses and pigs)
- Small breeds

1. Quantify the Bulmer-effect for GS

- 2. Prospects of GS when phenotyping is limiting
 - 1. Optimum construction of the reference population
 - 2. Response to GS when ref. pops are small

1. The Bulmer-effect with GS

1. The Bulmer-effect with GS

Assumptions:

- Markers capture a proportion ρ^2 of the additive genetic variance
- No updating of the reference population
- Selection is based on the known genomic EBV

Variance GEBV: $\sigma_{EBV}^2 = \rho^2 \sigma_A^2$

Variance GEBV in selected parents : $\sigma_{EBV}^2 * = (1-k)\sigma_{EBV}^2$ k = 0.7 - 0.9

Next generation: $\sigma_{EBV,t+1}^2 = \frac{1}{2}(1-k)\sigma_{EBV,t}^2 + \frac{1}{2}\sigma_{EBV,0}^2$

Bulmer-equilibrium variance GEBV:
$$\sigma_{EBV_{eq.}}^2 = \frac{\sigma_{EBV_0}^2}{1+k} \approx (0.53....0.59)\sigma_{EBV_0}^2$$

1. The Bulmer-effect with GS

Response to selection:
$$R_{eq} = \frac{R_0}{\sqrt{1+k}} \approx (0.73....0.77)R_0$$

Accuracy:
$$\rho_{eq.} = \rho_0 \frac{1}{\sqrt{1 + k(1 - \rho_0^2)}} \approx (0.83...0.86)\rho_0 \text{ for } \rho_0 = 0.7$$

Additive genetic variance:
$$\sigma_{A_{eq.}}^2 = \sigma_{A_0}^2 \left(1 - \frac{k \rho_0^2}{1+k} \right) \approx (0.76 - 0.79) \sigma_{A_0}^2 \text{ for } \rho_0 = 0.7$$

Conclusion

- The Bulmer-effect reduces response to GS by ~25%
- This is independent of accuracy
- This is identical to Bulmer-effect for traditional BLUP-EBV (Dekkers, 1992)
- This is more than with phenotypic selection

2.1 Optimal construction of the reference population with fixed # phenotypes

• Use progeny testing?

■ Use own performance → phenotype and genotype same individuals?

Accuracy GS (Daetwyler et al. 2008):
$$\rho = \sqrt{\frac{r^2}{r^2 + n_G / n}}$$

- r² = reliability of "record" in the reference population
- n = number of individuals in the reference population
- n_G = effective number of genetic effects to estimate

Progeny testing \rightarrow r² increases, but n decreases

2.2 Response when reference populations are small

Methods

- Compare GS with traditional selection
 - Own-performance
 - Progeny testing (for traits not recordable on candidate)
- Ref. pop. is based on own performance information
- Deterministic simulations in SelAction
 - (Schrooten et al. 2005; Dekkers 2007)

Scenario 1: GS info available <u>on top of own performance info</u>

- Effect of reference population size
- No change in generation interval

Conclusion: When phenotypic info is available, GS adds little

Scenario 2: GS info in stead of own performance info

Prospects when generation interval (L) can be shortened

 \rightarrow Break-even reference population size as function of reduction in L

- The Bulmer-effect reduces response to GS by ~25%
 - This is the same as with traditional BLUP
- When phenotyping is limiting, the same individuals should be genotyped and phenotyped in the ref. pop.
- When L cannot be reduced, large ref. pops are required to obtain same response.
- When L can be reduced, the required ref. pop. size decreases rapidly

Genomic Selection: The Bulmer-effect,

and prospects with small reference populations

Ilse van Grevenhof

Animal Breeding and Genomics Centre

Piter Bijma Johan van Arendonk

