

Effect of milking frequency and nutrition in pasture-based dairy cows during an extended lactation

A.G. Rius, C.V.C. Phyn, J.K. Kay, and J.R. Roche

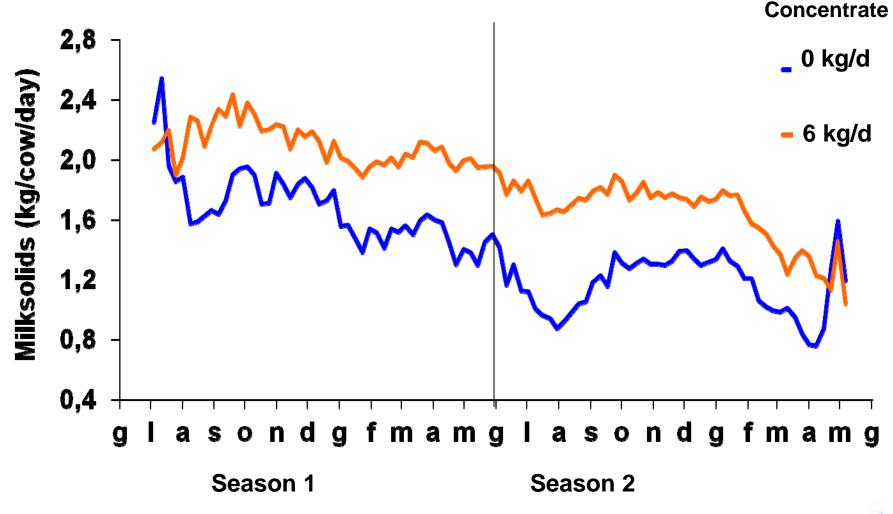
Dairy Farming in New Zealand

Seasonal pasture-based system

-40% Holstein-Friesian (491 kg BW)

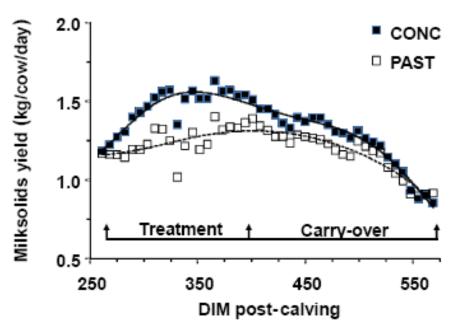
-13% Jersey (383 kg BW)

- 39% HFxJ cross (440 kg BW)
- Milk yield = 4,000 kg/year, 22 kg/day at peak
- AI = 75% of cows
- Strategic use of supplements and milking frequency


Extended Lactation: Why?

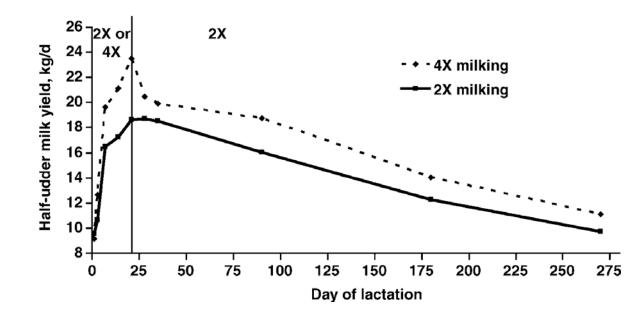
- Extended lactations (>300 to 650 DIM)
- Improve reproductive function and welfare
- Reduce costs of breeding
- More profit
- More even spread of labour

Milksolids Production During Extended Lactations



Dairy

Kolver et al., 2007


Concentrate Supplementation Increased Production in Extended Lactations

- 60 H-F non-pregnant cows (250 DIM)
- Pasture (Past) or Past
 + 5 kg/d DM of
 concentrate (Conc)
- Treatment 11 weeks

Wall and McFadden 2008

• Milking 4x for 4 wk increased milk production (Hillerton et al., 1990)

- We proposed that concentrate supplementation and 3x milking will increase production during an EL
 - In NZ Holstein-Friesian grazing dairy cows

Experimental Treatments

- 120 Holstein-Friesian
 328 DIM (non-pregnant)
- n = 30 cows/treatment
- Milking frequencies (2x or 3x)
- Diet: Pasture (Pas) or pasture + 6 kg/d DM concentrate (Con)
- Treatments for 9 wks (July Sept)

3x Increased Milk Production

	Treat		P-value	
	2 x	3x	SED	Diet
Milk yield (kg)	757	835	24	<0.01
_actose yield (kg)	35	37	1.0	0.04
rotein yield (kg)	32	33	1.0	0.24
at yield (kg)	36	37	1.2	0.65
actose, %	4.65	4.52	0.02	<0.001
rotein, %	4.31	4.08	0.03	<0.001
at, %	4.91	4.64	0.08	<0.001
				D

Con increased Milk Production

	Treat		P-value	
	Pas	Con	SED	Diet
Milk yield (kg)	764	828	24	<0.01
Lactose yield (kg)	34	38	1.2	<0.001
Protein yield (kg)	31	34	1.0	0.01
Fat yield (kg)	36	37	1.2	0.39
Lactose, %	4.55	4.61	0.02	0.01
Protein, %	4.18	4.21	0.03	0.28
Fat, %	4.88	4.68	0.08	<0.01
				D

Con Increased BW and BCS

Treatments						P-value	
End of treatment	2x	3x	Pas	Con	SED	MF	Diet
BW, kg	533	533	523	544	3	0.95	<0.001
BCS	5.0	5.0	4.8	5.2	0.09	0.64	<0.001
End of mating							
BW, kg	599	602	597	605	5	0.62	0.15
BCS	6.4	6.2	6.2	6.4	0.13	0.07	0.22

BCS: 1 to 10 (1 is emaciated and 10 is obese)

Con Increased Plasma Hormones

	Treatr	nents	_	P-value
	Pas	Con	SED	Diet
Insulin, µU/mL	4.89	6.48	0.20	<0.001
IGF-I, ng/mL	15.4	17.9	0.62	<0.001
Growth hormone, ng/mL	1.83	2.19	0.11	<0.001
Leptin, ng/mL	0.75	0.97	0.04	<0.001

Treatments Affected Reproductive Function

	Treatments				_	P-value	
	2x	3x	Pas	Con	SED	MF	Diet
21-d submission rate, %	98	93	95	97	3	0.15	0.66
42-d pregnancy rate, %	83	72	85	71	8	0.14	0.08
First service conception rate, %	63	64	73	55	9	0.92	0.05
Final non-pregnancy rate, %	4	9	4	9	5	0.22	0.27

Conclusions

- Milk yield, BCS, BW, and plasma hormones increased with concentrate supplementation
- Milk yield but not MS increased with 3x
- No carryover effect

Thank you!

