Conserving a single gene versus overall genetic diversity with the help of optimal contributions

EAAP 2012

Jack Windig, Ina Hulsegge and Krista Engelsma

Harbour unique genetic variation
 Conservation in gene banks

 Genetic diversity should be maximised

Maximising genetic diversity in a gene bank

- Optimal contributions is the method of choice
- Minimises c'Ac
 - A = numerator relationship matrix
 - Pedigree based or Molecular based
 - c = contribution vector
 - Sums to 1
 - Excluded animals have 0 contribution
- Constraints
 - No negative contributions
 - Equal contributions of selected candidates
 - Male and female contributions sum to 0.5

Software program: Gencont

Conservation of special genes

Often interest in specific genes Coat or colour varieties Curly coat in American Bashkir Curly horses • Poultry colour varieties Elimination of specific genes Scrapie sensitive alleles in sheep Introgressions from other breeds Risk of loosing other diversity when targeting a specific allele

 Maximise diversity while constraining allele frequencies

Targeting specific alleles with optimal contributions

Constraint on sexes: s = Qc

- s = [0.5 0.5]
- Q = two column vector, per animal [1 0] if male or [0 1] if female
- c = contribution vector

Can be replaced by allele frequencies

- s = [0.0 1.0] or [0.05 0.95] or [0.5 0.5] or any other frequency
- Q = two column vector: [1 0] if homozygote 1 [0.5 0.5] if heterozygote [0 1] if homozygote 2
- c = contribution vector

Does conservation of individual genes with optimal contributions work?

- Holstein population with 568 animals
 - Genotyped with 50K SNP
- Simulation of Conservation of 20 animals with equal contributions (5% each) in genebank
- Random choice of 100 loci
 - First subsequent loci with frequency 0.05/0.95; 0.10/0.90; 0.25/0.75; 0.5/0.5
- Target frequencies in genebank
 - Eliminate minor allele (0.0/1.0)
 - Original frequency
 - Maximise diversity (0.5/0.5)
 - Eliminate major allele (1.0/0.0)

Results: Genetic diversity (% fixed alleles)

%fixed in original population: 6.1%

VESTOC

- %fixed in gene bank without target freq.: 10.1%
- %fixed in gene bank with target frequency 0.0/1.0

Original frequency	% fixed in gene bank
0.05/0.95	10.1
0.10/0.90	10.1
0.25/0.75	10.2
0.50/0.50	10.7

Larger loss if target frequency differs more from original

Results: Genetic diversity (% fixed alleles)

Original frequency	Target frequency			
	0.0/1.0	original	0.50/0.50	1.0/0.0
0.05/0.95	10.1	10.2	11.2	Х
0.10/0.90	10.1	10.2	10.6	Х
0.25/0.75	10.2	10.2	10.2	12.0
0.50/0.50	10.7	10.1	10.1	10.8

Larger loss if target frequency differs more from original

RESEARCH

WAGENINGENUR

Practical example: Groningen White headed and B19

- Rare breed: around 60 bulls left, 98 if gene bank animals included
- Blood group B19 only known in this breed
- Should we breed for (more?) B19?
 - Do we loose other diversity if B19 is fixed?
- 42 animals with blood group known, including 14 of 98 bulls
- Other bulls genotype estimated with BLUP (Gengler et al 2007)

Allele frequencies and average relatedness

- Whole population
 - Allele frequency: 21.1%
 - Average relatedness: 0.085
 - with optimal contributions: 0.050

Average relatedness with optimal contributions and target frequency:

- 0.075 for 5%
- 0.050 for 25%
- 0.054 for 50%
- 0.132 for 100%
- Loss of diversity when B19 animals are lost
- Loss of diversity when B19 is fixed

Conclusions

- Targeting specific alleles while conserving animals can lead to a substantial loss of diversity
- Optimal contributions restrict the loss
- The more the target allele frequency differs from the population allele frequency the higher the loss

